已知數(shù)列{an}的通項(xiàng)公式an=n2-(6+2λ)n+2014,若a6或a7為數(shù)列{an}的最小項(xiàng),則實(shí)數(shù)λ的取值范圍
 
考點(diǎn):數(shù)列的函數(shù)特性
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過(guò)配方利用二次函數(shù)的單調(diào)性即可得出.
解答: 解:an=n2-(6+2λ)n+2014=[n-(3+λ)]2+2014-(3+λ)2,
∵a6或a7為數(shù)列{an}的最小項(xiàng),
∴5.5<3+λ<7.5,
解得
5
2
<λ<
9
2

故答案為:(
5
2
,
9
2
)
點(diǎn)評(píng):本題考查了二次函數(shù)的單調(diào)性、配方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校共有學(xué)生2000名,各年級(jí)男、女學(xué)生人數(shù)如表,現(xiàn)用分層抽樣的方法在全校學(xué)生中抽取64人,則應(yīng)在三年級(jí)抽取的學(xué)生人數(shù)為(  )
一年級(jí) 二年級(jí) 三年級(jí)
女生 385 380 b
男生 375 360 c
A、19B、16C、500D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個(gè)頂點(diǎn)與拋物線(xiàn)C:x2=4
3
y的焦點(diǎn)重合,F(xiàn)1F2分別是橢圓的左、右焦點(diǎn),且離心率e=
1
2
,直線(xiàn)l:y=kx+m(km<0)與橢圓C交于M、N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB是橢圓C經(jīng)過(guò)原點(diǎn)O的弦,AB∥l,且
|AB|2
|MN|
=4.是否存在直線(xiàn)l,使得
OM
ON
=-2?若存在,求出直線(xiàn)l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y2=2px(p>0),其焦點(diǎn)為F,一條過(guò)焦點(diǎn)F,傾斜角為θ(0<θ<π)的直線(xiàn)交拋物線(xiàn)于A,B兩點(diǎn),連接AO(O為坐標(biāo)原點(diǎn)),交準(zhǔn)線(xiàn)于點(diǎn)B',連接BO,交準(zhǔn)線(xiàn)于點(diǎn)A',求四邊形ABB'A'的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2,當(dāng)x>1時(shí),f(x+1)=f(x)+f(1),且若直線(xiàn)y=kx與函數(shù)y=f(x)的圖象恰有5個(gè)不同的公共點(diǎn),則實(shí)數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=lnx+x2的圖象與函數(shù)y=3x-b的圖象有3個(gè)不同的交點(diǎn),則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:|AC|=|BC|=4,∠ACB=90°,M為BC的中點(diǎn),D為以AC為直徑的圓上一動(dòng)點(diǎn),則
AM
DC
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿(mǎn)足不等式組
x-2≤0
y-1≤0
x+2y-2≥0
,則|x+y|的最小值為( 。
A、3B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面α,β,直線(xiàn)l,m,且有l(wèi)⊥α,m?β,則下列四個(gè)命題正確的個(gè)數(shù)為( 。
①若α∥β,則l⊥m;       ②若l∥m,則l∥β;
③若α⊥β,則l∥m;       ④若l⊥m,則l⊥β.
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案