設(shè)集合M={x|1<x≤2},N={x|x≤a},若M∩(∁RN)=M,則a的取值范圍是(  )
A、(-∞,1)
B、(-∞,1]
C、[1,+∞)
D、(2,+∞)
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:由全集R及N表示出N的補(bǔ)集,根據(jù)M與N補(bǔ)集的交集為M,確定出a的范圍即可.
解答: 解:∵N={x|x≤a},全集為R,
∴∁RN={x|x>a},
∵M(jìn)={x|1<x≤2},M∩(∁RN)=M,
∴a≤1,
則a的范圍為(-∞,1],
故選:B.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某高中隨機(jī)抽取30名學(xué)生參加環(huán)保知識(shí)測(cè)試,得分(十分制)如圖所示,假設(shè)得分值的中位數(shù)為m,眾數(shù)為n,平均值為
.
x
,則這三個(gè)數(shù)的大小關(guān)系為
 
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin2(α+γ)=nsin2β,則
tan(α+β+γ)
tan(α-β+γ)
=(  )
A、
n-1
n+1
B、
n
n+1
C、
n
n-1
D、
n+1
n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列有關(guān)命題的說(shuō)法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、“m=1”是“直線x-my=0和直線x+my=0互相垂直”的充要條件
C、命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D、命題“已知x,y為一個(gè)三角形的兩內(nèi)角,若x=y,則sinx=siny”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知映射f:A→B,其中B=R,對(duì)應(yīng)法則:f:x→y=log 
1
2
(2-x)-
1-x
,對(duì)于實(shí)數(shù)k∈B,在集合A中不存在原象(說(shuō)明:設(shè)A、B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,對(duì)A內(nèi)任意一個(gè)元素x,在B中有一個(gè)且僅有一個(gè)元素y與x對(duì)應(yīng),則稱f是集合A到集合B的映射,這時(shí)稱y是x在映射f作用下的象,x稱做y的原象),則k的取值范圍是( 。
A、k<0B、k>0
C、k<1D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
,一條漸近線為l,拋物線C2:y2=4x的焦點(diǎn)為F,點(diǎn)P為直線l與拋物線C2異于原點(diǎn)的交點(diǎn),則|PF|=( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=
1-2i
1-i
對(duì)應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(3x2-6x+6)ex-x3
(1)求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(2)若x1≠x2滿足f(x1)=f(x2),求證:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2=12,直線l:4x+3y=25,圓C上的點(diǎn)A到直線l的距離小于2的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案