已知函數(shù)f(x)=ax+
bx
+c(a>0)的圖象在點(diǎn)(1,f(1))處的切線方程為y=x-1.
(1)用a表示出b,c;
(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范圍.
分析:(I)根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)f(x)在x=1處的導(dǎo)數(shù),從而求得切線的斜率,以及切點(diǎn)在函數(shù)f(x)的圖象上,建立方程組,解之即可;
(II)先構(gòu)造函數(shù)g(x)=f(x)-lnx=ax+
a-1
x
+1-2a-lnx,x∈[1,+∞),利用導(dǎo)數(shù)研究g(x)的最小值,討論a的范圍,分別進(jìn)行求解即可求出a的取值范圍.
解答:y解:(Ⅰ)f′(x)=a-
b
x2
,
則有
f(l)=a+b+c=0
f′(l)=a-b=1
,
解得
b=a-1
c=l-2a


(Ⅱ)由(Ⅰ)知,f(x)=ax+
a-1
x
+1-2a
,
令g(x)=f(x)-lnx=ax+
a-1
x
+1-2a-lnx,x∈[1,+∞)
則g(l)=0,g′(x)=a-
a-1
x2
-
1
x
=
ax2-x-(a-1)
x2
=
a(x-1)(x-
1-a
a
)
x2

(i)當(dāng)o<a<
1
2
1-a
a
>1

1<x<
1-a
a
,則g′(x)<0,g(x)是減函數(shù),
所以g(x)<g(l)=0,f(x)>lnx,故f(x)≥lnx在[1,+∞)上恒不成立.
(ii)a≥
1
2
時(shí),
1-a
a
≤l

若f(x)>lnx,故當(dāng)x≥1時(shí),f(x)≥lnx
綜上所述,所求a的取值范圍為[
1
2
,+∞)
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及函數(shù)恒成立問題等基礎(chǔ)題知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,分類討論思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案