【題目】.求最大的整數(shù),使得集合S有k個互不相同的非空子集,具有性質(zhì):對這k個子集中任意兩個不同子集,若它們的交非空,則它們交集中的最小元素與這兩個子集中的最大元素均不相同.

【答案】

【解析】

對有限非空實數(shù)集A,用分別表示集合A的最小元素與最大元素.

考慮集合S的所有包含1且至少有兩個元素的子集.

注意到,,

.

于是,這樣的子集一共個.

顯然滿足要求.

接下來證明:當時,不存在滿足要求的k個子集.

用數(shù)學歸納法證明:對整數(shù),在集合的任意個不同非空子集中,存在兩個子集,滿足,且. ①

顯然,只需對的情形證明上述結論.

時,將的全部七個非空子集分成三組,

第一組:{3},{1,3},{2,3};

第二組:{2},{1,2};

第三組:{1},{1,2,3}.

由抽屜原理,知任意四個非空子集必有兩個在同一組中, 取同組中的兩個子集分別記為,在排在前面的記為,則滿足結論①.

假設結論在時成立.考慮時的情形.

中至少有個子集不含,對其中的個子集用歸納假設,知存在兩個子集滿足結論①.

若至多有-1個子集不含,則至少有+1個子集含,將其中+1個子集均去掉,得到{1,2,…,n}的+1個子集.

由于{1,2,…,n}的全體子集可分為組,每組兩個子集互補,故由抽屜原理,知在上述+1個子集中一定有兩個屬于同一組,即互為補集.

因此,相應地有兩個子集滿足,這兩個集合顯然滿足結論①.

于是,時結論成立.

綜上,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.

(1)求證:平面PAC平面PBC

(2)AB2,AC1PA1,求二面角CPBA的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

①命題“若,則方程無實根”的否命題;

②命題“在中,,那么為等邊三角形”的逆命題;

③命題“若,則”的逆否命題;

④“若,則的解集為”的逆命題;

其中真命題的序號為(

A.①②③④B.①②④C.②④D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了適應高考改革,某中學推行“創(chuàng)新課堂”教學.高一平行甲班采用“傳統(tǒng)教學”的教學方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取名學生的成績進行統(tǒng)計分析,結果如下表:(記成績不低于分者為“成績優(yōu)秀”)

分數(shù)

甲班頻數(shù)

乙班頻數(shù)

(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認為“成績優(yōu)秀與教學方式有關”?

甲班

乙班

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)現(xiàn)從上述樣本“成績不優(yōu)秀”的學生中,抽取人進行考核,記“成績不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.

參考公式:,其中

臨界值表

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過點,兩點,且圓心C在直線.

1)求圓C的方程;

2)設,對圓C上任意一點P,在直線MC上是否存在與點M不重合的點N,使是常數(shù),若存在,求出點N坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電信公司為了加強新用5G技術的推廣使用,為該公司的用戶制定了一套5G月消費返流量費的套餐服務方案;當月消費金額不超過100元時,按消費金額的進行返還;當月消費金額超過100元時,除消費金額中的100元仍按進行返還外,若另超出100元的部分消費金額為A元,則超過部分按進行返還,記用戶當月返還所得流量費y(單位:),消費金額x(單位:)

1)寫出該公司用戶月返還所得流量費的函數(shù)模型;

2)如果用戶小李當月獲返還的流量費是12元,那么他這個月的消費金額是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】科技改變生活,方便生活.共享單車的使用就是云服務的一種實踐,它是指企業(yè)與政府合作,為居民出行提供單車共享服務,它符合低碳出行理念,為解決城市出行的最后一公里提供了有力支撐,是共享經(jīng)濟的一種新形態(tài).某校學生社團為研究當?shù)厥褂霉蚕韱诬嚾巳旱哪挲g狀況,隨機抽取了當?shù)?/span>名使用共享單車的群眾作出調(diào)查,所得頻率分布直方圖如圖所示.

1)估計當?shù)毓蚕韱诬囀褂谜吣挲g的中位數(shù);

2)若按照分層抽樣從年齡在,的人群中抽取人,再從這人中隨機抽取人調(diào)查單車使用體驗情況,記抽取的人中年齡在的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】漢諾塔(又稱河內(nèi)塔)問題是源于印度一個古老傳說的益智玩具大梵天創(chuàng)造世界的時候做了三根金剛石柱子,在一根柱子上從下往上按照大小順序摞著64片黃金圓盤大梵天命令婆羅門把圓盤從下面開始按大小順序重新擺放在另一根柱子上.并且規(guī)定,在小圓盤上不能放大圓盤,在三根柱子之間一次只能移動一個圓盤.如下圖所示,從左到右有ABC三根柱子,其中A柱子上面有從小疊到大的n個圓盤,現(xiàn)要求將A柱子上的圓盤移到C柱子上去,期間只有一個原則:一次只能移動一個盤子且大盤子不能在小盤子上面,則移動的次數(shù)為_______(表示)

ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在直角梯形中,,分別是上的點,,且().將四邊形沿折起,連接().在折起的過程中,下列說法中正確的是(

A.平面

B.四點不可能共面

C.,則平面平面

D.平面與平面可能垂直

查看答案和解析>>

同步練習冊答案