(2x-
1
x
n的展開(kāi)式的各個(gè)二項(xiàng)式系數(shù)之和為64,則在(2x-
1
x
n的展開(kāi)式中,常數(shù)項(xiàng)為( 。
A、-120B、120
C、-60D、60
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專(zhuān)題:二項(xiàng)式定理
分析:在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).
解答: 解:由題意可得2n=64,求得 n=6,故(2x-
1
x
n展開(kāi)式的通項(xiàng)公式為T(mén)r+1=(-1)r
C
r
6
•(2)6-rx6-
3
2
r

令6-
3
2
r=0,求得 r=4,得展開(kāi)式的常數(shù)項(xiàng)為
C
4
6
22
=60,
故選:D.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題“在一個(gè)三角形的三個(gè)內(nèi)角中,至少有2個(gè)銳角”時(shí),假設(shè)命題的結(jié)論不成立的正確敘述是“在一個(gè)三角形的三個(gè)內(nèi)角中,
 
個(gè)銳角”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-tx2+3x,若對(duì)于任意的a∈[1,2],b∈(2,3],函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減,則實(shí)數(shù)t的取值范圍是(  )
A、(-∞,3]
B、(-∞,5]
C、[3,+∞)
D、[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若α為銳角且cos(α+
π
4
)=
3
5
,則cosα=( 。
A、
2
5
B、
6
2
5
C、
5
5
D、
7
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|sin(2x+
π
3
)|,則下列關(guān)于函數(shù)f(x)的說(shuō)法中正確的是( 。
A、f(x)是偶函數(shù)
B、f(x)最小正周期為π
C、f(x)圖象關(guān)于點(diǎn)(-
π
6
,0)對(duì)稱(chēng)
D、f(x)在區(qū)間[
π
3
12
]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)
4+3i
(2-i)2
=( 。
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,在(0,+∞)上為減函數(shù)的是( 。
A、y=
ex
x
B、y=(1-x)ex
C、y=x-ln(1+x)
D、y=x3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={-2,-1},B={x|(x+1)(x-2)<0},則A∩∁UB=( 。
A、{-2,-1}
B、{-2,1}
C、{-1,1}
D、{-2,-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:(m-1)x+2my+2=0
(1)求證直線l必經(jīng)過(guò)第四象限;
(2)若直線l不過(guò)第三象限,求實(shí)數(shù)m的取值范圍;
(3)求直線l在兩坐標(biāo)軸上截距相等時(shí)的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案