(本題滿分7分)選修4一4:坐標(biāo)系與參數(shù)方程

  已知直線的參數(shù)方程:為參數(shù))和圓的極坐標(biāo)方程:

(Ⅰ)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)判斷直線和圓的位置關(guān)系

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆福建省四地六校聯(lián)考高三上學(xué)期第二次月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)本題(1)、(2)、(3)三個選答題,每小題7分,任選2題作答,滿分14分,如果多做,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中。
(1)(本小題滿分7分) 選修4-2:矩陣與變換
已知,若所對應(yīng)的變換把直線變換為自身,求實(shí)數(shù),并求的逆矩陣。
(2)(本題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程:為參數(shù))和圓的極坐標(biāo)方程:。
①將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
②判斷直線和圓的位置關(guān)系。
(3)(本題滿分7分)選修4-5:不等式選講
已知函數(shù)
①解不等式
②證明:對任意,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆福建省泉州外國語中學(xué)高三上學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將選題號填入括號中
(1)(本題滿分7分)選修4一2:矩陣與變換
求矩陣的特征值及對應(yīng)的特征向量。
(2)(本題滿分7分)選修4一4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程:為參數(shù))和圓的極坐標(biāo)方程:。
(I)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(II)判斷直線和圓的位置關(guān)系
(3)(本題滿分7分)選修4一5:不等式選講
已知函數(shù). 若不等式恒成立,求實(shí)數(shù)的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將選題號填入括號中

(1)(本題滿分7分)選修4一2:矩陣與變換

   求矩陣的特征值及對應(yīng)的特征向量。

    

(2)(本題滿分7分)選修4一4:坐標(biāo)系與參數(shù)方程

  已知直線的參數(shù)方程:為參數(shù))和圓的極坐標(biāo)方程:

(I)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;

(II)判斷直線和圓的位置關(guān)系

 

(3)(本題滿分7分)選修4一5:不等式選講

 已知函數(shù). 若不等式恒成立,求實(shí)數(shù)的范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省四地六校聯(lián)考高三上學(xué)期第二次月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)本題(1)、(2)、(3)三個選答題,每小題7分,任選2題作答,滿分14分,如果多做,則按所做的前兩題計分。作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中。

(1)(本小題滿分7分) 選修4-2:矩陣與變換

已知,若所對應(yīng)的變換把直線變換為自身,求實(shí)數(shù),并求的逆矩陣。

 

(2)(本題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

 已知直線的參數(shù)方程:為參數(shù))和圓的極坐標(biāo)方程:。

①將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;

②判斷直線和圓的位置關(guān)系。

 

(3)(本題滿分7分)選修4-5:不等式選講

 已知函數(shù)

①解不等式;

②證明:對任意,不等式成立.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分7分)選修4一5:不等式選講

  已知函數(shù). 若不等式恒成立,求實(shí)數(shù)的范圍。

查看答案和解析>>

同步練習(xí)冊答案