【題目】函數(shù)是定義在(-1,1)上的奇函數(shù),且.
(1)求函數(shù)的解析式;
(2)證明函數(shù)f(x)在(-1,1)上是增函數(shù).
【答案】(1)f(x)=; (2)見解析.
【解析】
(1)由奇函數(shù)的性質(zhì)可得f(0)=0,結(jié)合,代入可求a,b;
(2)先設(shè)﹣1<x1<x2<1,然后根據(jù)單調(diào)性的定義比較f(x1)與f(x2)的大小即可判斷.
(1)∵是定義在(﹣1,1)上的奇函數(shù),
∴f(0)0,
∴b=0,f(x),
∵,
∴,
解可得,a=1,
∴f(x);
(2)設(shè)﹣1<x1<x2<1,
則f(x1)﹣f(x2),
∵﹣1<x1<x2<1,
∴x1﹣x2<0,2﹣x1x2>0,(2)(2)>0,
∴f(x1)﹣f(x2)<0即f(x1)<f(x2),
∴函數(shù)f(x)在(﹣1,1)上是增函數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調(diào)查的1000人的得分(滿分100分)統(tǒng)計結(jié)果如下表所示.
組別 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以大致認為,此次問卷調(diào)查的得分服從正態(tài)分布, 近似為這1000人得分的平均值值(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示),請用正態(tài)分布的知識求;
(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎勵方案::
(。┑梅植坏陀的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;
(ⅱ)每次獲贈送的隨機話費和對應(yīng)的概率為:
贈送的隨機話費(單元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
現(xiàn)有市民甲要參加此次問卷調(diào)查,記 (單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列與數(shù)學(xué)期望.
附:參考數(shù)據(jù)與公式
,若,則
①;
②;
③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校、兩個班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數(shù)學(xué)興趣小組成績的平均值及方差
①班數(shù)學(xué)興趣小組的平均成績高于班的平均成績
②班數(shù)學(xué)興趣小組的平均成績高于班的平均成績
③班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差
④班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差
其中正確結(jié)論的編號為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了迎接世博會,某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租。該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得).
(1)求函數(shù)的解析式及其定義域;
(2)試問當(dāng)每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若在處取得極值,求的值;
(2)設(shè),試討論函數(shù)的單調(diào)性;
(3)當(dāng)時,若存在正實數(shù)滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= lnx-x+,其中a>0.
(1)若f(x)在(0,+∞)上存在極值點,求a的取值范圍;
(2)設(shè)a∈(1,e],當(dāng)x1∈(0,1),x2∈(1,+∞)時,記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓,且點到橢圓C的兩焦點的距離之和為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 若,是橢圓上的兩個點,線段的中垂線的斜率為,且直線與交于點,求證:點在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 為的中點,點在線段上.
(Ⅰ)求證: ;
(Ⅱ)試確定點的位置,使得直線與平面所成的角和直線與平面所成的角相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體及其三視圖如圖所示,過棱的中點作平行于、的平面分別交四面體的棱、、于點、、.
(1)求證:四邊形是矩形;
(2)求點到面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com