【題目】某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三全體名學(xué)生中隨機(jī)抽取了名學(xué)生的體檢表,并得到如圖所示的頻率分布直方圖.
(Ⅰ)若直方圖中后四組的頻數(shù)成等差數(shù)列,計(jì)算高三全體學(xué)生視力在以下的人數(shù),并估計(jì)這名學(xué)生視力的中位數(shù)(精確到);
(Ⅱ)學(xué)習(xí)小組發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對高三全體成績名次在前名和后名的學(xué)生進(jìn)行了調(diào)查,部分?jǐn)?shù)據(jù)如表1,根據(jù)表1及臨界表2中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?
年段名次 是否近視 | 前名 | 后名 |
近 視 | ||
不近視 |
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
(參考公式: ,其中)
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)由頻率分布直方圖得到高三全體學(xué)生視力在以下的人數(shù),并估計(jì)這名學(xué)生視力的中位數(shù);(2)完成的列聯(lián)表,求出的值,從而作出判斷.
試題解析:
(Ⅰ)由圖表可知,第一組有人,第二組有人,第三
組有人,則后四組的人數(shù)為人
因?yàn)楹笏慕M的頻數(shù)成等差數(shù)列,所以后四組的頻數(shù)依次為
故樣本中,高視力在以下的人數(shù)為人
由樣本估計(jì)總體,估計(jì)高三全體學(xué)生視力在以下的人數(shù)為人
因?yàn)榍叭M的頻率之和為,
前四組的頻率之和為,所以中位數(shù)在內(nèi)
法一:估計(jì)這名學(xué)生視力的中位數(shù)為
(法二):設(shè)這名學(xué)生視力的中位數(shù)為,
則有,解得
估計(jì)這名學(xué)生視力的中位數(shù)為
(Ⅱ)由已知, 的列聯(lián)表右表:
則
故在犯錯(cuò)誤的概率不超過的前提下沒有把握認(rèn)為視力與學(xué)習(xí)成績有關(guān)系 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過點(diǎn)的直線與相交于不同的兩點(diǎn),滿足?
若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對任意n∈N*總有2Sn=an2+n,且an<an+1.若對任意n∈N*,θ∈R,不等式λ(n+2)恒成立,求實(shí)數(shù)λ的最小值( )
A.1B.2C.1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)的圖象如圖所示,過點(diǎn)和
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間和極大值點(diǎn);
(Ⅱ)求實(shí)數(shù)的值;
(Ⅲ)若恰有兩個(gè)零點(diǎn),請直接寫出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com