【題目】已知函數(shù),是的導(dǎo)函數(shù),且.
(1)求的值,并證明在處取得極值;
(2)證明:在區(qū)間有唯一零點.
【答案】(1),證明見解析(2)證明見解析
【解析】
(1)求出導(dǎo)函數(shù),根據(jù)求出的值,再通過計算導(dǎo)函數(shù)的正負(fù)情況說明函數(shù)的單調(diào)性,計算出極值點.
(2)根據(jù),由零點存在性定理可知函數(shù)在區(qū)間有零點,再證明零點的唯一性即可.
解:(1),令,得,∴.
∴,.
當(dāng)時,,,故是區(qū)間上的增函數(shù).
當(dāng)時,令,則,在區(qū)間上,,故是上的減函數(shù),∴,即在區(qū)間上,,因此是區(qū)間上的減函數(shù).綜上所述,在處取得極大值.
(2)由(1),∵(當(dāng)且僅當(dāng)時,.)
,∴在區(qū)間至少有一個零點.
以下討論在區(qū)間上函數(shù)值的變化情況:
由(1),令,則,
令,在上,解得,.
①當(dāng)時,在區(qū)間,,遞減,;在,,
遞增,.故存在唯一實數(shù),使,即.在
上,,遞減,;在上,,遞增,而,故在上,,當(dāng)且僅當(dāng)時,.故在上有唯一零點.
②對任意正整數(shù),在區(qū)間,,遞減,,
在區(qū)間,,遞增,,故存在唯一實數(shù),使,即,在上,因,故,遞減,在上,因,故,遞增,,,∴,
∴在區(qū)間即有唯一零點.
綜上,在區(qū)間有唯一零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線:,四邊形和都為正方形,原點為的中點,點在拋物線上.
(1)求點和點的坐標(biāo);
(2)過點的直線與拋物線相交于兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,滿足(…).
(1)若,求的值;
(2)若且,則數(shù)列中第幾項最。空堈f明理由;
(3)若(n=1,2,3,…),求證:“數(shù)列為等差數(shù)列”的充分必要條件是“數(shù)列為等差數(shù)列且(n=1,2,3,…)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)閱兵領(lǐng)導(dǎo)小組辦公室介紹,2019年國慶70周年閱兵有59個方(梯)隊和聯(lián)合軍樂團(tuán),總規(guī)模約1.5萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊15個.為了保證閱兵式時隊列保持整齊,各個方隊對受閱隊員的身高也有著非常嚴(yán)格的限制,太高或太矮都不行.徒步方隊隊員,男性身高普遍在175cm至185cm之間;女性身高普遍在163cm至175cm之間,這是常規(guī)標(biāo)準(zhǔn).要求最為嚴(yán)格的三軍儀仗隊,其隊員的身高一般都在184cm至190cm之間.經(jīng)過隨機調(diào)查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:“某一閱兵女子身高不低于169cm”,根據(jù)直方圖得到P(C)的估計值為0.5.
(1)求直方圖中a,b的值;
(2)估計這個陣營女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】地球上的風(fēng)能取之不盡,用之不竭.風(fēng)能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風(fēng)力發(fā)電,近10年來,全球風(fēng)力發(fā)電累計裝機容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機容量就突破了,達(dá)到,中國的風(fēng)力發(fā)電技術(shù)也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔(dān)當(dāng)與決心.以下是近10年全球風(fēng)力發(fā)電累計裝機容量與中國新增裝機容量圖. 根據(jù)所給信息,正確的統(tǒng)計結(jié)論是( )
A.截止到2015年中國累計裝機容量達(dá)到峰值
B.10年來全球新增裝機容量連年攀升
C.10年來中國新增裝機容量平均超過
D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為.
(1)當(dāng)時,求的零點;
(2)若函數(shù)存在極小值點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且與雙曲線有相同的焦點.
(1)求橢圓的方程;
(2)直線與橢圓相交于,兩點,點滿足,點,若直線斜率為,求面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)為常數(shù)) .
(1)當(dāng)時,求曲線在處的切線方程:
(2)若函數(shù)在內(nèi)存在唯一極值點,求實數(shù)的取值范圍,并判斷,是在內(nèi)的極大值點還是極小值點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大數(shù)據(jù)時代對于現(xiàn)代人的數(shù)據(jù)分析能力要求越來越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學(xué)方法來代入某條數(shù)式的表示方式,比如,,2,,n是平面直角坐標(biāo)系上的一系列點,用函數(shù)來擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點列比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)的擬合誤差為:.已知平面直角坐標(biāo)系上5個點的坐標(biāo)數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函數(shù)來擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差的最小值,并求出此時的函數(shù)解析式;
若用二次函數(shù)來擬合題干表格中的數(shù)據(jù),求;
請比較第問中的和第問中的,用哪一個函數(shù)擬合題目中給出的數(shù)據(jù)更好?請至少寫出三條理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com