1、ac2>bc2是a>b成立的(  )
分析:本題考察不等式的性質(zhì),注意c=0時(shí)的情況.
解答:解:由不等式的性質(zhì)ac2>bc2?a>b,反之c=0時(shí),a>bac2>bc2
故選A
點(diǎn)評(píng):本題考查不等式的性質(zhì)和充要條件的判斷,屬基本題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、下列結(jié)論錯(cuò)誤的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R,則“ac2<bc2”是“a<b”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的有
①③④
①③④
.(只填寫真命題的序號(hào))
①若a,b,c∈R,則“ac2>bc2”是“a>b”成立的充分不必要條件;
②當(dāng)x∈(0,
π
4
)
時(shí),函數(shù)y=sinx+
1
sinx
的最小值為2;
③若命題“?p”與命題“p或q”都是真命題,則命題q一定是真命題;
④若命題p:?x∈R,x2+x+1<0,則?p:?x∈R,x2+x+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題中
①若a,b,c∈R,則“ac2>bc2”是“a>b”成立的充分不必要條件;
②當(dāng)x∈(0,
π
4
)時(shí),函數(shù)y=sinx+
1
sinx
的最小值為2;
③命題“若|x|>2,則x≥2或x≤-2”的否命題是“若|x|<2,則-2<x<2”;
④函數(shù)f(x)=lnx+x-
3
2
在區(qū)間(1,2)上有且僅有一個(gè)零點(diǎn).
其中正確命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的有
 
.(只填寫真命題的序號(hào))
①若a,b,c∈R則“ac2>bc2”是“a>b”成立的充分不必要條件;
②若橢圓
x2
16
+
y2
25
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,且弦AB過點(diǎn)F1,則△ABF2的周長為16;
③若命題“?p”與命題“p或q”都是真命題,則命題q一定是真命題;
④若命題p:?x∈R,x2+x+1<0,則?p:?x∈R,x2+x+1≥0.

查看答案和解析>>

同步練習(xí)冊答案