【題目】如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論中:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.
其中正確的有____________(把所有正確的序號都填上).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機擲兩枚質(zhì)地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,則
( )
A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2aln x+(a-2)x,a∈R.
(1)當(dāng)a=1時,求函數(shù)f(x)的圖象在點(1,f(1))處的切線方程.
(2)是否存在實數(shù)a,對任意的x1,x2∈(0,+∞)且x1≠x2有>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計 | |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)判斷是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系?
附: , n=a+b+c+d.
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
如圖,四邊形是正方形,△與△均是以為直角頂點的等腰直角三角形,點是的中點,點是邊上的任意一點.
(1)求證: ;
(2)求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數(shù)據(jù)如下表所示:
零件的個數(shù)x/個 | 2 | 3 | 4 | 5 |
加工的時間y/h | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測加工10個零件需要多少時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F,P,Q,M,N分別是棱AB,AD,DD1,BB1,A1B1,A1D1的中點.求證:
(1)直線BC1∥平面EFPQ.
(2)直線AC1⊥平面PQMN.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com