分析 由已知得圓上點(diǎn)到原點(diǎn)距離d=5$\sqrt{2}$,從而|d-r|<$\sqrt{2}$|a|且d+r>$\sqrt{2}$|a|,由此能求出實(shí)數(shù)a的取值范圍,即可求出圓心C到直線3x+4y=0距離d的取值范圍.
解答 解:圓心(a,a)到原點(diǎn)的距離為$\sqrt{2}$|a|,半徑r=10$\sqrt{2}$,
圓上點(diǎn)到原點(diǎn)距離為d,
∵圓(x-a)2+(y-a)2=200上總存在兩個(gè)點(diǎn)到原點(diǎn)的距離為5$\sqrt{2}$,
∴d=5$\sqrt{2}$,
∴|d-r|<$\sqrt{2}$|a|且d+r>$\sqrt{2}$|a|
∴|$\frac{d-r}{\sqrt{2}}$|<|a|<$\frac{d+r}{\sqrt{2}}$,即5<|a|<15,
∴圓心C到直線3x+4y=0距離d=$\frac{|7a|}{\sqrt{9+16}}$∈(7,21).
故答案為:(7,21).
點(diǎn)評(píng) 本題考查了實(shí)數(shù)的取值范圍與應(yīng)用問(wèn)題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{3}{2}$,4) | B. | (-$\frac{3}{2}$,-4) | C. | ($\frac{3}{2}$,-4) | D. | (-3,-4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\frac{1}{4},\left.1]\right.$ | B. | ($\frac{1}{2}$,2] | C. | [1,4) | D. | [2,8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{3}$] | B. | (0,$\frac{1}{2}$] | C. | [-$\frac{1}{3}$,$\frac{1}{3}$] | D. | [-$\frac{1}{2}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com