【題目】已知遞減等差數(shù)列{an}滿足:a1=2,a2a3=40. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn
(Ⅱ)若遞減等比數(shù)列{bn}滿足:b2=a2 , b4=a4 , 求數(shù)列{bn}的通項(xiàng)公式.

【答案】解:(I)設(shè){an}的公差為d,則a2=2+d,a3=2+2d, ∴(2+d)(2+2d)=40,解得:d=3或d=﹣6.
∵{an}為遞減數(shù)列,∴d=﹣6.
∴an=2﹣6(n﹣1)=8﹣6n,
Sn= n=﹣3n2+5n.
(II)由(I)可知a2=﹣4,a4=﹣16.
設(shè)等比數(shù)列{bn}的公比為q,
,解得
∵{bn}為遞減數(shù)列,∴
∴bn=﹣22n1=﹣2n
【解析】(I)格局等差數(shù)列的通項(xiàng)公式列方程組解出公差,得出通項(xiàng)公式,代入求和公式計(jì)算Sn;(II)根據(jù)等比數(shù)列的通項(xiàng)公式列方程組解出首項(xiàng)和公比即可得出通項(xiàng)公式.
【考點(diǎn)精析】通過靈活運(yùn)用數(shù)列的前n項(xiàng)和,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,.

)求抽取的卡片上的數(shù)字滿足的概率;

)求抽取的卡片上的數(shù)字,不完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (x>0,e為自然對(duì)數(shù)的底數(shù)),f'(x)是f(x)的導(dǎo)函數(shù). (Ⅰ)當(dāng)a=2時(shí),求證f(x)>1;
(Ⅱ)是否存在正整數(shù)a,使得f'(x)≥x2lnx對(duì)一切x>0恒成立?若存在,求出a的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l過點(diǎn)M(3,4),其傾斜角為45°,圓C的參數(shù)方程為 .再以原點(diǎn)為極點(diǎn),以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xoy有相同的長度單位.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,求|MA||MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為矩形,測(cè)棱底面,點(diǎn)的中點(diǎn),作


Ⅰ)求證:平面平面

Ⅱ)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面凸四邊形中(凸四邊形指沒有角度數(shù)大于的四邊形),.

(1)若,,求;

(2)已知,記四邊形的面積為.

① 求的最大值;

② 若對(duì)于常數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.(直接寫結(jié)果,不需要過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(
A.[ ]
B.[ , ]
C.[ , ]
D.[ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3

)求數(shù)列{an}的通項(xiàng)公式;

)若數(shù)列{an}的前k項(xiàng)和Sk=﹣35,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案