分析 利用等差數(shù)列的通項(xiàng)公式可得an,再利用等比數(shù)列的通項(xiàng)公式及其性質(zhì)即可得出.
解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a3=3,a5=6,∴a1+2d=3,a1+4d=6,聯(lián)立解得a1=0,d=$\frac{3}{2}$.
∵a3,a5,am成等比數(shù)列,∴62=3am,解得am=12.
∴$0+\frac{3}{2}(m-1)$=12,解得m=9.
故答案為:9.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x-m=0無(wú)實(shí)數(shù)根,則m≤0” | |
B. | “$θ=\frac{π}{6}$”是“$sin(θ+2kπ)=\frac{1}{2}$”的充分不必要條件 | |
C. | 若p∧q為假命題,則p,q均為假命題 | |
D. | 對(duì)于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com