函數(shù)f(x)=2x2-
1
3
x3
在區(qū)間[0,6]上的最大值是( 。
A.
32
3
B.
16
3
C.12D.9
f'(x)=4x-x2=-x(x-4),
當(dāng)0≤x<4時,f'(x)≥0,f(x)遞增;
當(dāng)4<x≤6時,f'(x)<0,f(x)遞減;
∴x=4時f(x)取得極大值,也即最大值,
∴f(x)max=f(4)=2×16-
1
3
×43
=
32
3
,
故選:A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=x3+1在x=0處的切線的斜率是( 。
A.-1B.0C.
1
2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3+
1-a
2
x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(3)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t).記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一塊半徑為r的殘缺的半圓形材料ABC,O為半圓的圓心,OC=
1
2
r
,殘缺部分位于過點C的豎直線的右側(cè).現(xiàn)要在這塊材料上截出一個直角三角形,有兩種設(shè)計方案:如圖甲,以BC為斜邊;如圖乙,直角頂點E在線段OC上,且另一個頂點D在
AB
上.要使截出的直角三角形的面積最大,應(yīng)該選擇哪一種方案?請說明理由,并求出截得直角三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-
1
2
x2+bx+c
,且f(x)在x=1處取得極值.
(1)求b的值;
(2)若當(dāng)x∈[1,2]時,f(x)<c2恒成立,求c的取值范圍;
(3)c為何值時,曲線y=f(x)與x軸僅有一個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)在x∈[-
1
2
,1)
上的最大值為
3
8
,求實數(shù)b的值;
(2)若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實數(shù)a的取值范圍;
(3)在(1)的條件下,設(shè)F(x)=
f(x),x<1
g(x),x≥1
,對任意給定的正實數(shù)a,曲線y=F(x)上是否存在兩點P、Q,使得△POQ是以O(shè)(O為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=alnx+x2(a為實常數(shù)).
(1)當(dāng)a=-4時,求函數(shù)f(x)在[1,e]上的最大值及相應(yīng)的x值;
(2)當(dāng)x∈[1,e]時,討論方程f(x)=0根的個數(shù).
(3)若a>0,且對任意的x1,x2∈[1,e],都有|f(x1)-f(x2)|≤|
1
x1
-
1
x2
|
,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲線y=f(x)在點(a,f(a))處與直線y=b相切,求a與b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1-x
ax
+lnx

(Ⅰ)若函數(shù)f(x)在[1,+∞)上是增函數(shù),求正實數(shù)a的取值范圍;
(Ⅱ)若a=1,k∈R且k<
1
e
,設(shè)F(x)=f(x)+(k-1)lnx,求函數(shù)F(x)在[
1
e
,e]
上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案