分析 (1)由f(-x)+f(x)=0可得g(x)+g(2-x)=2,使用倒序相加法求出an;
(2)求出bn,利用裂項法求和.
解答 解:(1)∵f(-x)+f(x)=$\frac{{e}^{-x}-1}{{e}^{-x}+1}$+$\frac{{e}^{x}-1}{{e}^{x}+1}$=$\frac{1-{e}^{x}}{1+{e}^{x}}$+$\frac{{e}^{x}-1}{{e}^{x}+1}$=0,
∴g(x)+g(2-x)=f(x-1)+1+f(1-x)+1=2,
∵an=g($\frac{1}{n}$)+g($\frac{2}{n}$)+g($\frac{3}{n}$)+…+g($\frac{2n-1}{n}$),
∴an=g($\frac{2n-1}{n}$)+g($\frac{2n-2}{n}$)+g($\frac{2n-3}{n}$)+…+g($\frac{1}{n}$),
兩式相加得2an=2(2n-1),
∴an=2n-1.
(2)bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}-$$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.
點評 本題考查了函數(shù)的性質(zhì),數(shù)列通項公式的求法和裂項法求和,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18π | B. | 18 | C. | 9π | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{7}{9}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x±y=0 | B. | $\sqrt{3}x±y=0$ | C. | x±y=0 | D. | $\sqrt{2}x±y=0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com