(本題滿分15分)
已知函數(shù)
(1)求函數(shù)的定義域;
(2)記函數(shù)求函數(shù)的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)函數(shù)(),.
(Ⅰ)令,討論的單調(diào)性;
(Ⅱ)關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)的取值范圍;
(Ⅲ)對于函數(shù)與定義域上的任意實(shí)數(shù),若存在常數(shù),使得和都成立,則稱直線為函數(shù)與的“分界線”.設(shè),,試探究與是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為定義在上的奇函數(shù),當(dāng)時(shí),;
(1)求在上的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(1)判斷其奇偶性;
(2)指出該函數(shù)在區(qū)間上的單調(diào)性并證明;
(3)利用(1)和(2)的結(jié)論,指出該函數(shù)在上的增減性.(不用證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知f(x)是R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)畫出f(x)的圖象,并指出f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)為實(shí)數(shù),函數(shù)。
(1)若,求的取值范圍 (2)求的最小值
(3)設(shè)函數(shù),直接寫出(不需要給出演算步驟)不等式的解集。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,角的始邊落在軸上,其始邊、終邊分別與單位圓交于點(diǎn)、(),△為等邊三角形.
(1)若點(diǎn)的坐標(biāo)為,求的值;
(2)設(shè),求函數(shù)的解析式和值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com