【題目】已知橢圓的離心率為, 傾斜角為的直線經(jīng)過橢圓的右焦點(diǎn)且與圓相切.

(1)求橢圓 的方程;

(2)若直線與圓相切于點(diǎn), 且交橢圓兩點(diǎn),射線于橢圓交于點(diǎn),設(shè)的面積與的面積分別為.

①求的最大值; ②當(dāng)取得最大值時,求的值.

【答案】(1); (2).

【解析】

(1)根據(jù)已知得到a,b,c的方程,解方程組即得橢圓的標(biāo)準(zhǔn)方程.(2) ①先把直線和橢圓的方程聯(lián)立計算出,再計算出弦長|AB|,即得的最大值;②先計算出,最后計算.

(1)依題直線的斜率.設(shè)直線的方程為,

依題有:

(2)由直線與圓相切得: .

設(shè).將直線代入橢圓的方程得:

.

設(shè)點(diǎn)到直線的距離為,故的面積為:

,

當(dāng).等號成立.故的最大值為1.

設(shè),由直線與圓相切于點(diǎn),可得

.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為 (θ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)方程.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求|OM|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)研究發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時間的變化而變化,講課開始時,學(xué)生的興趣激增;中間有一段時間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.設(shè)f(t)表示學(xué)生注意力隨時間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗分析得知:f(t)= ,
(1)求出k的值,并指出講課開始后多少分鐘,學(xué)生的注意力最集中?能堅持多久?
(2)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到185,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)根據(jù)2002﹣2014年期間學(xué)生的興趣愛好,分別創(chuàng)建了“攝影”、“棋類”、“國學(xué)”三個社團(tuán),據(jù)資料統(tǒng)計新生通過考核遠(yuǎn)拔進(jìn)入這三個社團(tuán)成功與否相互獨(dú)立,2015年某新生入學(xué),假設(shè)他通過考核選拔進(jìn)入該校的“攝影”、“棋類”、“國學(xué)”三個社團(tuán)的概率依次為m, ,n,已知三個社團(tuán)他都能進(jìn)入的概率為 ,至少進(jìn)入一個社團(tuán)的概率為 ,且m>n.
(1)求m與n的值;
(2)該校根據(jù)三個社團(tuán)活動安排情況,對進(jìn)入“攝影”社的同學(xué)增加校本選修字分1分,對進(jìn)入“棋類”社的同學(xué)增加校本選修學(xué)分2分,對進(jìn)入“國學(xué)”社的同學(xué)增加校本選修學(xué)分3分.求該新同學(xué)在社團(tuán)方面獲得校本選修課字分分?jǐn)?shù)的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知圓的圓心是直線軸的交點(diǎn),且與直線相切,求圓的標(biāo)準(zhǔn)方程;

(2)已知圓,直線過點(diǎn)與圓相交于兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足ccosB=(2a+b)cos(π﹣C).
(1)求角C的大;
(2)若c=4,△ABC的面積為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于簡單幾何體的說法中正確的是( )

①有兩個面互相平行,其余各面都是平行四邊形的多面體是棱柱;

②有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;

③在斜二測畫法中,與坐標(biāo)軸不平行的線段的長度在直觀圖中有可能保持不變;

④有兩個底面平行且相似其余各面都是梯形的多面體是棱臺;

⑤空間中到定點(diǎn)的距離等于定長的所有點(diǎn)的集合是球面.

A. ③④⑤ B. ③⑤ C. ④⑤ D. ①②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對任意x∈[﹣1,1],不等式﹣4≤x3+3|x﹣a|≤4恒成立,則實(shí)數(shù)a的取值范圍為(
A.[﹣ , ]
B.[﹣ ]
C.[0, ]
D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn)M(1,0)和直線x=﹣1上的動點(diǎn)N(﹣1,t),線段MN的垂直平分線交直線y=t于點(diǎn)R,設(shè)點(diǎn)R的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+b(k≠0)交x軸于點(diǎn)C,交曲線E于不同的兩點(diǎn)A,B,點(diǎn)B關(guān)于x軸的對稱點(diǎn)為點(diǎn)P.點(diǎn)C關(guān)于y軸的對稱點(diǎn)為Q,求證:A,P,Q三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊答案