【題目】下列結(jié)論中錯誤的是( )
A.設(shè)命題p:?x∈R,使+x+2<0,則¬P:?x∈R,都有+x+2≥0
B.若x,y∈R,則“x=y”是“xy≤取到等號”的充要條件
C.已知命題p和q,若p∧q為假命題,則命題p與q都為假命題
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為真命題
【答案】C
【解析】對于A,命題p:x∈R,使x2+x+2<0,它的否定¬P:x∈R,都有x2+x+2≥0,是正確的;
對于B,若x,y∈R,則“x=y”時,“xy≤()2取到等號”,
當(dāng)“xy≤()2取到等號時”,“x=y”成立,∴是充要條件,命題正確;
對于C,當(dāng)命題p∧q為假命題時,命題p、q有1個為假命題,或者都是假命題,∴命題C錯誤;
對于D,“在△ABC中,A>BsinA>sinB”,∴原命題的逆命題是真命題,是正確的.
故選:C.
【考點精析】利用復(fù)合命題的真假和特稱命題對題目進行判斷即可得到答案,需要熟知“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真;特稱命題:,,它的否定:,;特稱命題的否定是全稱命題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,使得f(x)<2成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在橢圓: ()上,設(shè), , 分別為左頂點、上頂點、下頂點,且下頂點到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點, ()為橢圓上兩點,且滿足,求證: 的面積為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是平面直角坐標(biāo)系中兩兩不同的四點,若,,且,則稱調(diào)和分割.已知平面上的點調(diào)和分割點,則下列說法正確的是
A. 可能線段的中點
B. 可能線段的中點
C. 可能同時在線段上
D. 不可能同時在線段的延長線上
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在正整數(shù)T,對于任意正整數(shù)n都有an+T=an成立,則稱數(shù)列{an}為周期數(shù)列,周期為T.已知數(shù)列{an}滿足a1=m(m>0),an+1= , 關(guān)于下列命題:
①當(dāng)m=時,a5=2
②若m= , 則數(shù)列{an}是周期為3的數(shù)列;
③對若a2=4,則m可以取3個不同的值;
④m∈Q且m∈[4,5],使得數(shù)列{an}是周期為6.
其中真命題的個數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | |||
女生 | |||
合計 |
已知在全部人中隨機抽取人抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場預(yù)計全年分批購入每臺價值為2000元的電視機共3600臺.每批都購入臺,且每批均需付運費400元.貯存購入所有的電視機全年所付保管費與每批購入電視機的總價值(不含運費)成正比,比例系數(shù)為,若每批購入400臺,則全年需用去運輸和保管總費用43600元.
(1)求的值;
(2)現(xiàn)在全年只有24000元資金用于支付這筆費用,請問能否恰當(dāng)安排每批進貨的數(shù)量使資金夠用?寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有5000人,其中男生3500人,女生1500人,為了了解該校學(xué)生每周平均體育鍛煉時間的情況以及該校學(xué)生每周平均體育鍛煉時間是否與性別有關(guān),現(xiàn)在用分層抽樣的方法從中收集300位學(xué)生每周平均體育鍛煉時間的樣本數(shù)據(jù)(單位:小時),其頻率分布直方圖如下:
附:,其中.
已知在樣本數(shù)據(jù)中,有60位女生的每周平均體育鍛煉時間超過4小時,根據(jù)獨立性檢驗原理,我們( )
A. 沒有理由認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”
B. 有的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”
C. 有的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別無關(guān)”
D. 有的把握認(rèn)為“該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com