15.函數(shù)y=3tan(2x+$\frac{5π}{6}$)的最小正周期為$\frac{π}{2}$.

分析 根據(jù)正切函數(shù)的周期公式進(jìn)行求解即可.

解答 解:由正切函數(shù)的周期公式得T=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$

點(diǎn)評(píng) 本題主要考查三角函數(shù)的周期的計(jì)算,根據(jù)條件結(jié)合正切函數(shù)的周期公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.直線4x+3y+a=0與圓(x-1)2+(y-2)2=9相交于A、B兩點(diǎn),且$|{AB}|=4\sqrt{2}$,則實(shí)數(shù)a的值是( 。
A.a=-5或a=-15B.a=-5或a=15C.a=5或a=-15D.a=5或a=15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.準(zhǔn)線方程是y=-2的拋物線標(biāo)準(zhǔn)方程是(  )
A.x2=8yB.x2=-8yC.y2=-8xD.y2=8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知{an}是等比數(shù)列,則“a2<a4”是“{an}是單調(diào)遞增數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$,則|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在(2x-$\frac{1}{4x}$)5的展開(kāi)式中,含x3項(xiàng)的系數(shù)為-20.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.《九章九術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早一千多年.例如塹堵指底面為直角三角形,且側(cè)棱垂直于底面的三棱柱;陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵ABC-A1B1C1中,AC⊥BC,若A1A=AB=2,當(dāng)陽(yáng)馬B-A1ACC1體積最大時(shí),則塹堵ABC-A1B1C1的體積為( 。
A.$\frac{8}{3}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.定義在R上的奇函數(shù)f(x)是周期為2的周期函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=2x-1,則f(log23)的值為-$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案