13.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,類比這些等式,若$\sqrt{7+\frac{a}}$=7$\sqrt{\frac{a}}$(a,b均為正整數(shù)),則a+b=55.

分析 觀察所給式子的特點(diǎn),找到相對應(yīng)的規(guī)律,問題得以解決.

解答 解:∵$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,
$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,
$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,
…,
∴$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$=2$\sqrt{\frac{2}{{2}^{2}-1}}$,
$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$=3$\sqrt{\frac{3}{{3}^{2}-1}}$,
$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$=4$\sqrt{\frac{4}{{4}^{2}-1}}$,
…,
$\sqrt{7+\frac{a}}$=7$\sqrt{\frac{a}}$=7$\sqrt{\frac{7}{{7}^{2}-1}}$
∴a=7,b=72-1=48,
∴a+b=48+7=55.
故答案為:55

點(diǎn)評 本題考查歸納推理,考查對于所給的式子的理解,主要看清楚式子中的項(xiàng)與項(xiàng)的數(shù)目與式子的個(gè)數(shù)之間的關(guān)系,本題是一個(gè)易錯(cuò)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某三棱錐的三視圖如圖所示,則該三棱錐中最長棱的棱長為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二次函數(shù)f(x)=ax2+bx-3在x=1處取得極值,且在點(diǎn)(0,-3)處的切線與直線2x+y=0平行,設(shè)兩數(shù)g(x)=xf(x)+4x.
(Ⅰ)求函數(shù)g(x)的解析式,并求g(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)g(x)在x∈[0,2]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex-ax-1
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的最小值是-1,最小正周期為2π,其圖象經(jīng)過點(diǎn)M($\frac{π}{3}$,$\frac{1}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)已知f(α+β)=-$\frac{3}{5}$,f(α-β)=$\frac{4}{5}$,求tanαtanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在如圖的空間直角坐標(biāo)系中,正方體ABCD-A1B1C1D1的棱長為1,P是線段BD1上的一點(diǎn),且BP=2PD1,則點(diǎn)P的坐標(biāo)是( 。
A.($\frac{1}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)B.($\frac{2}{3}$,$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)D.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=n2(n∈N*),則①a3=5;②通項(xiàng)公式an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若$\frac{a}{{c}^{2}}$>$\frac{{c}^{2}}$,則下列不等式一定成立的是( 。
A.a2>b2B.lga>lgbC.2a>2bD.$\frac{1}$>$\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,內(nèi)角A,B,C所對邊分別為a,b,c,且a=3b,sinB=$\frac{1}{4}$,則sinA等于( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{9}$D.$\frac{3}{16}$

查看答案和解析>>

同步練習(xí)冊答案