5.已知向量$\overrightarrow a$=(2,x),向量$\overrightarrow b$=(-1,2),若$\overrightarrow a$⊥$\overrightarrow b$,則實(shí)數(shù)x=1.

分析 利用向量垂直與數(shù)量積的關(guān)系即可得出.

解答 解:∵$\overrightarrow a$⊥$\overrightarrow b$,
∴$\overrightarrow a$•$\overrightarrow b$=-2+2x=0,解得x=1.
故答案為:1.

點(diǎn)評 本題考查了向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)$\overrightarrow{a}$,$\overrightarrow$為單位向量,若$\overrightarrow c$滿足|${\overrightarrow c$-(${\overrightarrow a$+$\overrightarrow b}$)|=|${\overrightarrow a$-$\overrightarrow b}$|,則|${\overrightarrow c}$|的最大值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|1≤2x+5≤13},B={y|y=$\frac{3}{2$x+2,x∈A},則A∩B等于( 。
A.B.[-1,4]C.[-2,4]D.[-4,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知全集U=R,集合A={x|y=log2(11-x2)>1},B={x|x2-x-6>0},M={x|x2+bx+c≥0}.
(1)求A∩B; 
(2)若∁UM=A∩B,求b、c的值.
(3)若x2+bx+c=0一個根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),求z=-2b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)是定義在[-5,5]上的偶函數(shù),且在區(qū)間[0,5]是減函數(shù),若f(2a+3)<f(a),則實(shí)數(shù)a的取值范圍是[-4,-3)∪(-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l:y=kx+2與橢圓E:x2+$\frac{{y}^{2}}{5}$=1交于A,B兩點(diǎn),若三角形AOB的面積$\frac{\sqrt{5}}{2}$,求直線的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=aln(x+1)+$\frac{1}{2}$x2-x,其中a為非零實(shí)數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若y=f(x)有兩個極值點(diǎn)x1,x2,且x1<x2,求證:$\frac{f({x}_{2})}{{x}_{1}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列{an},a7=2.則前13項(xiàng)的和S13=( 。
A.13B.25C.26D.39

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ+1\\ y=sinθ\end{array}\right.$,(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y=-2\sqrt{3}+\sqrt{3}t\end{array}\right.$,(t為參數(shù)).
(1)求圓C的極坐標(biāo)方程;
(2)直線l與圓C交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

同步練習(xí)冊答案