【題目】某創(chuàng)業(yè)投資公司計劃在2010年向某企業(yè)投入800萬元用于開發(fā)新產(chǎn)品,并在今后若干年內(nèi),每年的投入資金都比上一年減少20%.估計2010年可獲得投資回報收入400萬元,由于該項投資前景廣闊,預計今后的投資回報收入每年都會比上一年增加25%.

)設第年(2010年為第一年)的投入資金為萬元,投資回報收入為萬元,求的表達式;

)從哪一年開始,該投資公司前幾年的投資回報總收入將超過總投入?

【答案】,

)2014

【解析】

)根據(jù)題意分別寫出首項與公比,即可寫出的表達式。

)分別計算出前年的投入與回報的和再解不等式,即可得出答案。

)由題意知 所以

,所以

)前年共投入

年投資回報總收入

解得,

即從2014年開始該投資公司前幾年的投資回報總收入將超過總投入。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,對稱軸為坐標軸,橢圓與直線相切于點

(1)求橢圓的標準方程;

(2)若直線 與橢圓相交于、兩點( 不是長軸端點),且以為直徑的圓過橢圓軸正半軸上的頂點,求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,平面平面, 的中點.

1)求證: 平面;

2)若, , ,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機”弘揚傳統(tǒng)文化,某市大約10萬名市民進行了漢字聽寫測試.現(xiàn)從某社區(qū)居民中隨機抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在之間,將測試結果按如下方式分成六組:第一組,第二組,…,第六組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第1組或第4組的概率;

(2)已知第5,6兩組市民中有3名女性,組織方要從第5,6兩組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班有40位同學,座位號記為,用下面的隨機數(shù)表選取5組數(shù)作為參加青年志愿者活動的5位同學的座位號.

4954 4454 8217 3793 2378 8735 2096 4384 2634 9164

5724 5506 8877 0474 4767 2176 3350 2583 9212 0767 5086

選取方法是從隨機數(shù)表第一行的第11列和第12列數(shù)字開始,由左到右依次選取兩個數(shù)字,則選出來的第5個志愿者的座位號是( )

A.09B.20C.37D.38

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的方程為).

1)若直線l在兩坐標軸上的截距相等,求直線l的方程;

2)若直線lx正半軸、射線)分別交于P,Q兩點,當a為何值時,的面積最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校初一年級全年級共有名學生,為了拓展學生的知識面,在放寒假時要求學生在假期期間進行廣泛的閱讀,開學后老師對全年級學生的閱讀量進行了問卷調(diào)查,得到了如圖所示的頻率分布直方圖(部分已被損毀),統(tǒng)計人員記得根據(jù)頻率直方圖計算出學生的平均閱讀量為萬字.根據(jù)閱讀量分組按分層抽樣的方法從全年級人中抽出人來作進一步調(diào)查.

(1)在閱讀量為萬到萬字的同學中有人的成績優(yōu)秀,在閱量為萬到萬字的同學中有人成績不優(yōu)秀,請完成下面的列聯(lián)表,并判斷在“犯錯誤概率不超過”的前提下,能否認為“學生成績優(yōu)秀與閱讀量有相關關系”;

閱讀量為萬到萬人數(shù)

閱讀量為萬到萬人數(shù)

合計

成績優(yōu)秀的人數(shù)

成績不優(yōu)秀的人數(shù)

合計

(2)在抽出的同學中,1)求抽到被污染部分的同學人數(shù);2)從閱讀量在萬到萬字及萬到萬字的同學中選出人寫出閱讀的心得體會.求這人中恰有人來自閱讀量是萬到萬的概率.

參考公式: ,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的方程為.

(1)求交點的直角坐標;

(2)過原點作直線,使 分別相交于點, 與點均不重合),求的最大值.

查看答案和解析>>

同步練習冊答案