5.以下命題中,正確命題的序號是①③.
①△ABC中,A>B的充要條件是sinA>sinB;
②函數(shù)y=f(x)在區(qū)間(1,2)上存在零點的充要條件是f(1)•f(2)<0;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(2,$\frac{\sqrt{2}}{2}$),則f(4)的值等于$\frac{1}{2}$;
④把函數(shù)y=sin(2-2x)的圖象向右平移2個單位后,得到的圖象對應(yīng)的解析式為y=sin(4-2x).

分析 ①跟姐姐大邊對大角以及正弦定理進行判斷,
②利用特殊值法舉反例進行判斷,
③根據(jù)待定系數(shù)法求出冪函數(shù)的解析式進行判斷,
④根據(jù)三角函數(shù)的圖象平移關(guān)系進行判斷.

解答 解:①△ABC中,A>B的充要條件是a>b,由正弦定理得sinA>sinB;故①正確,
②函數(shù)y=f(x)在區(qū)間(1,2)上存在零點的充要條件是f(1)•f(2)<0錯誤,比如f(x)=(x-$\frac{3}{2}$)2在區(qū)間(1,2)上存在零點$\frac{3}{2}$,但f(1)•f(2)<0不成立,故②錯誤
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(2,$\frac{\sqrt{2}}{2}$),
則設(shè)冪函數(shù)f(x)=xα,
則f(2)=2α=$\frac{\sqrt{2}}{2}$,得α=-$\frac{1}{2}$,
則f(4)=4α=(2α2=$\frac{1}{2}$;故③正確,
④把函數(shù)y=sin(2-2x)的圖象向右平移2個單位后,得到的圖象對應(yīng)的解析式為y=sin[2-2(x-2)]=sin(2-2x+4)=sin(6-2x),故④錯誤,
故答案為:①③.

點評 本題主要考查命題的真假判斷,涉及的知識點較多,綜合性較強,但難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)φ∈R,則“φ=2kπ+$\frac{π}{2}$(k∈Z)”是“f(x)=cos(2x+φ)為奇函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=loga(x-1)+8(a>0,a≠1)的圖象過定點A,且點A在冪函數(shù)f(x)的圖象上,則f(3)=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在正方形 ABCD中,F(xiàn)是 AD 的中點,BF與 AC交于點 G,則△BGC 與四邊形 CGFD的面積之比是4:5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若函數(shù)f(x)=(k+2)ax+2-b(a>0,且a≠1)是指數(shù)函數(shù)
(1)求k,b的值;
(2)求解不等式f(2x-7)>f(4x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=$\left\{\begin{array}{l}{(a-5)x-2,x≥2}\\{{x}^{2}-2(a+1)x+3a,x<2}\end{array}\right.$ 對任意x1,x2∈R(x1≠x2),都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則實數(shù)a的取值范圍為( 。
A.(-∞,1]B.(1,5)C.[1,5)D.[1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=-x2+2x.
(1)求函數(shù)f(x)在R上的解析式;
(2)畫出函數(shù)f(x)的圖象;
(3)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在銳角△ABC中,角A、B所對的邊長分別為a、b,若2asinB=$\sqrt{3}$b,則角A等于60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}滿足:a1=4,an+1-an=2n+3(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若${b_n}=\frac{n+1}{{{n^2}{a_{n+1}}}}(n∈N*)$,Tn是數(shù)列{bn}的前n項的和,求證:${T_n}<\frac{5}{16}$.

查看答案和解析>>

同步練習(xí)冊答案