【題目】全集U={0,1,3,5,6,8},集合A={1,5,8 },B={2},則集合(UA)∪B=(
A.{0,2,3,6}
B.{0,3,6}
C.{2,1,5,8}
D.

【答案】A
【解析】解:∵U={0,1,3,5,6,8},A={ 1,5,8 },
∴(CUA)={0,3,6}
∵B={2},
∴(CUA)∪B={0,2,3,6}
故選:A
【考點精析】解答此題的關(guān)鍵在于理解交、并、補集的混合運算的相關(guān)知識,掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x<a},B={x|x2-3x+2<0},A∩B=B,則實數(shù)a的取值范圍是 (  )

A. a≤1 B. a<1 C. a≥2 D. a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)為減函數(shù),若f(2)=0,不等式(x﹣1)f(x﹣1)>0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合X={x|﹣2≤x≤2,且x∈Z},下列關(guān)系式中成立的為(
A.0X
B.{0}∈X
C.{0}X
D.∈X

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:函數(shù)y=loga(ax+2a)(a>0a≠1)的圖像必過定點(-1,1),命題q:如果函數(shù)y=f(x)的圖像關(guān)于點(3,0)對稱,那么函數(shù)y=f(x-3)的圖像關(guān)于原點對稱,則有 ( )

A. “pq”為真 B. “pq”為假

C. pq D. pq

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2﹣1,則f(2x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩圓x2+y2=10和(x﹣1)2+(y﹣3)2=10相交于A,B兩點,則直線AB的方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個命題,
①如果平面α,β,γ滿足α⊥γ,β⊥γ,α∩β=l,則l⊥γ
②若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α
③已知a,b是異面直線,α,β為兩個平面,若aα,a∥β,bβ,b∥α,則α∥β
④一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線
其中正確命題的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)是R上的以3為周期的奇函數(shù),且f(2)=0,則f(x)=0在[0,6]內(nèi)解的個數(shù)為

查看答案和解析>>

同步練習(xí)冊答案