【題目】已知函數(shù)為奇函數(shù),且x=-1處取得極大 值2.
(1)求f(x)的解析式;
(2)過點A(1,t) 可作函數(shù)f(x)圖像的三條切線,求實數(shù)t的取值范圍;
(3)若對于任意的恒成立,求實數(shù)m取值范圍.
【答案】(1)(2)(-3,-2) (3)
【解析】試題分析:(1)由已知得 ,由此能求出 解析式.
(2)設(shè)切點為 ,則 ,消去 得 設(shè) ,由此利用導(dǎo)數(shù)性質(zhì)能求出實數(shù) 的取值范圍).
(3)由已知得 由此利用構(gòu)造法和導(dǎo)數(shù)性質(zhì)能求出實數(shù)m的取值范圍.
試題解析:
(1)因為f(x)為奇函數(shù),故b=d=0
又,故-a-c=2,3a+c=0,解得a=1,x=-3,故
(2)設(shè)切點為,則,消去得,
設(shè),則,所以g(x)在上遞減,在(0,1)上遞增,所以g(x)的極大值為g(1)=-2,極小值為g(0)=-3
因為過A的切線有三條,所以實數(shù)t的取值范圍是(-3,-2)
(3)依題意, 在上恒成立
當x=0時, ;
當x>0時,則須在上恒成立
令則
故
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】莫言是中國首位獲得諾貝爾文學(xué)獎的文學(xué)家,國人歡欣鼓舞。某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對莫言作品的了程度,結(jié)果如下:
閱讀過莫言的作品數(shù)(篇) | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(1)試估計該學(xué)校學(xué)生閱讀莫言作品超過50篇的概率.
(2)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”,根據(jù)題意完成下表,并判斷能否有的把握認為“對莫言作品的非常了解”與性別有關(guān)?
非常了解 | 一般了解 | 合計 | |
男生 | |||
女生 | |||
合計 |
注:K2=
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題12分)甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加的5項預(yù)賽成績記錄如下:
甲 | 82 | 82 | 79 | 95 | 87 |
乙 | 95 | 75 | 80 | 90 | 85 |
(1)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度考慮,你認為選派哪位學(xué)生參加合適?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點.
.求證:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE;(III)若PB與底面所成的角為600, AB=2a,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寧夏某市2008年至2012年新建商品住宅每平方米的均價(單位:千元)的數(shù)據(jù)如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 |
年份序號x | 1 | 2 | 3 | 4 | 5 |
每平米均價y | 2.0 | 3.1 | 4.5 | 6.5 | 7.9 |
(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析從2008年到2012年該市新建商品住宅每平方米均價的變化情況,并預(yù)測該市2015年新建商品住宅每平方米的均價.
附:回歸直線的斜率和截距的最小二乘估計公式分別為
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種多面體玩具共有12個面,在其十二個面上分別標有數(shù)字1,2,3,…,12.若該玩具質(zhì)地均勻,則拋擲該玩具后,任何一個數(shù)字所在的面朝上的概率均相等.
為檢驗?zāi)撑婢呤欠窈细瘢贫z驗標準為:多次拋擲該玩具,并記錄朝上的面上標記的數(shù)字,若各數(shù)字出現(xiàn)的頻率的極差不超過0.05.則認為該玩具合格.
(1)對某批玩具中隨機抽取20件進行檢驗,將每個玩具各面數(shù)字出現(xiàn)頻率的極差繪制成莖葉圖(如圖所示),試估計這批玩具的合格率;
(2)現(xiàn)有該種類玩具一個,將其拋擲100次,并記錄朝上的一面標記的數(shù)字,得到如下數(shù)據(jù):
朝上面的數(shù)字 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
次數(shù) | 9 | 7 | 8 | 6 | 10 | 9 | 9 | 8 | 10 | 9 | 7 | 8 |
1)試判定該玩具是否合格;
2)將該玩具拋擲一次,記事件:向上的面標記數(shù)字是完全平方數(shù)(能寫成整數(shù)的平方形式的數(shù),如,9為完全平方數(shù));事件:向上的面標記的數(shù)字不超過4.試根據(jù)上表中的數(shù)據(jù),完成以下列聯(lián)表(其中表示的對立事件),并回答在犯錯誤的概率不超過0.01的前提下,能否認為事件與事件有關(guān).
合計 | |||
合計 | 100 |
(參考公式及數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: 的左、右焦點分別為, 為坐標原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com