6.如圖,對(duì)大于等于2的自然數(shù)m的n次冪進(jìn)行如圖方式的“分裂”,如23的“分裂”中最大的數(shù)是5,34的“分裂”中最大的數(shù)是29,那么20163的“分裂”中最大的數(shù)是20162+2015.(寫(xiě)出算式即可)

分析 根據(jù)所給的數(shù)據(jù),不難發(fā)現(xiàn):在m3中,所分解的最大數(shù)是m2+m-1.根據(jù)發(fā)現(xiàn)的規(guī)律可求.

解答 解:在23(m為奇數(shù))的“分拆”的最大數(shù)是5=22+2-1,
在33(m為奇數(shù))的“分拆”的最大數(shù)是11=32+3-1,
在43(m為奇數(shù))的“分拆”的最大數(shù)是19=42+4-1,

由此歸納可得:在m3(m為奇數(shù))的“分拆”的最大數(shù)是m2+m-1,
20163“分裂”中最大的數(shù)是20162+2015.
故答案為:20162+2015

點(diǎn)評(píng) 歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)a,b,c∈R,且a>b,則下列命題一定正確的是( 。
A.ac>bcB.ac2≥bc2C.$\frac{1}{a}$<$\frac{1}$D.$\frac{a}$>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖是由一些小正方體摞成的,第(1)堆有1個(gè),第(2)堆有4個(gè),第(3)堆有10個(gè)…,則第n堆有$\frac{n(n+1)(n+2)}{6}$小正方體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,∠ABC=$\frac{π}{4}$,O為AB上一點(diǎn),3OB=3OC=2AB,PO⊥平面ABC,2DA=2AO=PO,OA=1,且DA∥PO.
(1)求證:平面PBD⊥平面COD;
(2)求點(diǎn)O到平面BDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$
(1)若方程f(x)=4有兩個(gè)實(shí)根,求實(shí)數(shù)b的取值范圍;
(2)若f(f($\frac{5}{6}$))=4,求實(shí)數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某學(xué)校高一、高二、高三年級(jí)分別有720、720、800人,現(xiàn)從全校隨機(jī)抽取56人參加防火防災(zāi)問(wèn)卷調(diào)查.先采用分層抽樣確定各年級(jí)參加調(diào)查的人數(shù),再在各年級(jí)內(nèi)采用系統(tǒng)抽樣確定參加調(diào)查的同學(xué),若將高三年級(jí)的同學(xué)依次編號(hào)為001,002,…,800,則高三年級(jí)抽取的同學(xué)的編號(hào)不可能為( 。
A.001,041,…761B.031,071,…791C.027,067,…787D.055,095,…795

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^{1-x}},\;x≤1}\\{1+{{log}_2}x,\;x>1}\end{array}}$,則滿足f(x)≤3的x的取值范圍為[1-log23,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$\overrightarrow{AB}$=(3,1),向量$\overrightarrow{a}$=(2,λ),若$\overrightarrow{a}$∥$\overrightarrow{AB}$,則實(shí)數(shù)λ的值為( 。
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的漸近線方程為( 。
A.y=±$\frac{\sqrt{3}}{2}$xB.y=±2xC.y=±$\frac{1}{2}$xD.y=±$\frac{2\sqrt{3}}{3}$x

查看答案和解析>>

同步練習(xí)冊(cè)答案