15.${(\frac{5}{{\sqrt{x}}}-x)^m}$的展開式中各項(xiàng)系數(shù)的和為256,則該展開式的二項(xiàng)式系數(shù)的最大值為6.

分析 由題意可得:令x=1,則(5-1)m=256,解得m=4.該展開式的二項(xiàng)式系數(shù)的最大值為${∁}_{4}^{2}$.

解答 解:由題意可得:令x=1,則(5-1)m=256,解得m=4.
該展開式的二項(xiàng)式系數(shù)的最大值為${∁}_{4}^{2}$=6.
故答案為:6.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=x3+3x2+6x,f(a)=1,f(b)=-9,則a+b的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)矩陣A滿足:A$[\begin{array}{l}{1}&{2}\\{0}&{6}\end{array}]$=$[\begin{array}{l}{-1}&{-2}\\{0}&{3}\end{array}]$,求矩陣A的逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥平面ABCD,BC=AP=5,AB=3,AC=4,M,N分別在線段AD,CP上,且$\frac{AM}{MD}$=$\frac{PN}{NC}$=4.
(Ⅰ)求證:MN∥平面PAB;
(Ⅱ)求三棱錐P-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i為虛數(shù)單位,復(fù)數(shù)z滿足(1+i)z=(1-i)2,則|z|為( 。
A.$\sqrt{2}$B.1C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知三棱柱ABC-A1B1C1中,AB=AC=AA1=2,側(cè)面ABB1A1⊥底面ABC,D是BC的中點(diǎn),∠BAA1=120o,B1D⊥AB.
(Ⅰ)求證:AC⊥面ABB1A1
(Ⅱ)求二面角C1-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示,已知$\overrightarrow{AC}=3\overrightarrow{BC}$,$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$,$\overrightarrow{OC}$=$\overrightarrow c$,則下列等式中成立的是( 。
A.$\overrightarrow c=\frac{3}{2}\overrightarrow b-\frac{1}{2}\overrightarrow a$B.$\overrightarrow c=2\overrightarrow b-\overrightarrow a$C.$\overrightarrow c=2\overrightarrow a-\overrightarrow b$D.$\overrightarrow c=\frac{3}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中為偶函數(shù)的是( 。
A.y=x2sinxB.y=2-xC.y=$\frac{sinx}{x}$D.y=|log0.5x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,一棟建筑物AB高(30-10$\sqrt{3}$)m,在該建筑 物的正東方向有一個(gè)通信塔CD.在它們之間的地面M點(diǎn)(B、M、D三點(diǎn)共線)測(cè)得對(duì)樓頂A、塔頂C的仰角分別是15°和60°,在樓頂A處 測(cè)得對(duì)塔頂C的仰角為30°,則通信塔CD的高為60m.

查看答案和解析>>

同步練習(xí)冊(cè)答案