3.已知集合U={1,4,5,6,7,8,9,10,11,12},A={6,8,10,12},B={1,6,8}.
(1)求A∪B,∁UA;
(2)寫出集合A∩B的所有子集.

分析 (1)直接利用已知條件求解并集與補(bǔ)集即可.
(2)求出交集,然后求解子集即可.

解答 解:集合U={1,4,5,6,7,8,9,10,11,12},A={6,8,10,12},B={1,6,8}
(1):A∪B={1,6,8,10,12},
UB={4,5,7,9,10,11}.
(2):A∩B={6,8},集合A∩B的所有子集:∅;{6};{8}:{6,8}.

點(diǎn)評 本題考查集合的基本運(yùn)算,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)求函數(shù)y=x-2-$\sqrt{2x-1}$的值域;
(2)求函數(shù)f(x)=2x2-2ax+3在[-1,1]的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=$\sqrt{1-\frac{{x}^{2}}{4}}$+2x的值域?yàn)閇-4,$\sqrt{17}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=-11,a3+a7=-6.
(1)求通項(xiàng)an
(2)則當(dāng)Sn取最小值時(shí),求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的是( 。
A.“f(0)”是“函數(shù) f(x)是奇函數(shù)”的充要條件
B.若 p:?x0∈R,x02-x0-1>0,則¬p:?x∈R,x2-x-1<0
C.若 p∧q為假命題,則p,q均為假命題
D.“若α=$\frac{π}{6}$,則sinα=$\frac{1}{2}$”的否命題是“若 α≠$\frac{π}{6}$,則 sinα≠$\frac{1}{2}$”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知平面α外兩點(diǎn)A、B到平面α的距離分別是3和5,則A,B的中點(diǎn)P到平面α的距離是4或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線ax+4y-2=0和2x-5y+b=0垂直,交于點(diǎn)A(1,m),則a=10,b=-12,m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知tanθ=2,則$\frac{1-sin2θ}{{2{{cos}^2}θ}}$的值為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+2,x≤0}\\{|2-x|,x>0}\end{array}\right.$,若f(-4)=f(0),則函數(shù)y=f(x)-ln(x+2)的零點(diǎn)個(gè)數(shù)有( 。
A.6B.4C.5D.7

查看答案和解析>>

同步練習(xí)冊答案