給出下列四個命題:
①“k=1”是“函數(shù)y=cos2kx-sin2kx的最小正周期為π”的充要條件;
②函數(shù)y=sin(2x-
π
6
)的圖象沿x軸向右平移
π
6
個單位所得的函數(shù)表達式是y=cos2x;
③函數(shù)y=lg(ax2-2ax+1)的定義域是R,則實數(shù)a的取值范圍是(0,1);
④設(shè)O是△ABC內(nèi)部一點,且
OA
+
OC
=-2
OB
,則△AOB與△AOC的面積之比為1:2;
其中真命題的序號是
(寫出所有真命題的序號).
分析:①當(dāng)k=-1時,函數(shù)y=cos2kx-sin2kx=cos2x的最小正周期也為π;②函數(shù)y=sin(2x-
π
6
)的圖象沿x軸向右平移
π
6
個單位所得的函數(shù)表達式是y=sin[2(x-
π
6
)-
π
6
]化簡 即可
③由函數(shù)y=lg(ax2-2ax+1)的定義域是R可得ax2-2ax+1>0恒成立,分類討論①若a=0,②
a>0
△=4a2-4a<0
可判斷;④設(shè)AC邊上的中線為BD,由O是△ABC內(nèi)部一點,且
OA
+
OC
=-2
OB
,可得O為BD的中點,
S△AOB
S△AOC
=
S△AOD
S△AOC
可求
解答:解:①當(dāng)k=-1時,函數(shù)y=cos2kx-sin2kx=cos2x的最小正周期也為π,故①錯誤
②函數(shù)y=sin(2x-
π
6
)的圖象沿x軸向右平移
π
6
個單位所得的函數(shù)表達式是y=sin[2(x-
π
6
)-
π
6
]=2sin(2x-
π
2
)
=-cos2x,故②錯誤
③由函數(shù)y=lg(ax2-2ax+1)的定義域是R可得ax2-2ax+1>0恒成立,①若a=0,滿足條件②
a>0
△=4a2-4a<0
解可得0<a<1,從而有0≤a<1,故③錯誤
④設(shè)AC邊上的中線為BD,由O是△ABC內(nèi)部一點,且
OA
+
OC
=-2
OB
,可得O為BD的中點,
S△AOB
S△AOC
=
S△AOD
S△AOC
=
1
2
,正確
故答案為:④
點評:本題主要考查了必要條件、充分條件與充要條件的判斷,函數(shù)圖象的平移及對數(shù)函數(shù)的定義域,函數(shù)的恒成立問題的求解,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案