sin75°•cos75°+sin15°•sin105°=(  )
A、0
B、
1
2
C、
3
2
D、1
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:利用誘導(dǎo)公式與兩角差的余弦即可求得答案.
解答: 解:∵sin75°•cos75°+sin15°•sin105°
=cos15°cos75°+sin15°sin75°
=cos(15°-75°)=cos(-60°)=
1
2
,
故選:B.
點評:本題考查兩角和與差的正弦函數(shù),考查轉(zhuǎn)化思想與運算求解能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
1
x
在點(-1,-1)處切線的斜率為( 。
A、
1
4
B、-
1
4
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐SABC,在三棱錐內(nèi)任取一點P,使得VP-ABC
1
2
VS-ABC的概率是( 。
A、
7
8
B、
3
4
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=cos(2x-
π
4
)的圖象,可由函數(shù)y=cos2x( 。
A、向左平移
π
8
個長度單位
B、向右平移
π
8
個長度單位
C、向左平移
π
4
個長度單位
D、向右平移
π
4
個長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某產(chǎn)品加工為成品的流程圖,從圖中可以看出,即使是一件不合格產(chǎn)品,也必須經(jīng)過幾道工序(  )
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y是實數(shù),則下列命題中是真命題的是(  )
A、若x<1,則x2<1
B、若lny2=0,則y=1
C、若sinx=siny,則x=y
D、若x<y,xy>0,則
1
x
1
y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)高一學(xué)生在數(shù)學(xué)研究性學(xué)習(xí)中,選擇了“測量一個底部不可到達的建筑物的高度”的課題.設(shè)選擇建筑物的頂點為A,假設(shè)A點離地面的高為AB.已知B,C,D三點依次在地面同一直線上,DC=a,從C,D兩點測得A點的仰角分別為α,β(α>β),則A點離地面的高AB等于( 。
A、
asinαsinβ
sin(α-β)
B、
asinαsinβ
cos(α-β)
C、
acosαcosβ
sin(α-β)
D、
acosαcosβ
cos(α-β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時擲兩個骰子,計算:
(1)一共有多少種不同的結(jié)果?
(2)其中向上的點數(shù)之和是5的結(jié)果有多少種?
(3)向上的點數(shù)之和是5的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,動圓C1:x2+y2=t2,1<t<3,與橢圓C2
x2
a2
+
y2
b2
=1相交于A,B,C,D四點,點A1,A2分別為C2的左,右頂點.橢圓C2的一個焦點為(2
2
,0),離心率為
2
2
3

(1)求橢圓C2的方程;   
(2)當t為何值時,矩形ABCD的面積取得最大值?并求出其最大面積;
(3)求直線AA1與直線A2B交點M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案