17.(Ⅰ)求值:$\frac{{tan150°cos{{210}°}sin({-60°})}}{{sin(-30°)cos{{120}°}}}$;
(Ⅱ)化簡(jiǎn):$\frac{sin(-α)cos(π+α)tan(2π+α)}{cos(2π+α)sin(π-α)tan(-α)}$.

分析 (Ⅰ)利用誘導(dǎo)公式以及特殊角的三角函數(shù)化簡(jiǎn)求解即可;
(Ⅱ)利用誘導(dǎo)公式轉(zhuǎn)化求解即可.

解答 解:(Ⅰ)原式=$\frac{{-tan3{0^0}(-cos3{0^0})(-sin6{0^0})}}{{-sin{{30}^0}(-cos{{60}^0})}}$=$-tan{60^0}=-\sqrt{3}$.…(5分)
(Ⅱ)原式=$\frac{-sinα(-cosα)tanα}{cosαsinα(-tanα)}=\frac{sinαcosαtanα}{-cosαsinαtanα}=-1$.…(10分)

點(diǎn)評(píng) 本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知復(fù)數(shù)z=x+yi(x,y∈R)滿足z•$\overline{z}$+(1-2i)•z+(1+2i)•$\overline{z}$=3.求復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{\frac{x+1}{x-1}-1,x>1}\\{2-{e^x},x≤1}\end{array}}\right.$,若函數(shù)h(x)=f(x)-mx-2有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(-∞,-e]∪{0}∪{-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,F(xiàn)為線段BC的中點(diǎn),CE=2EF,$DF=\frac{3}{5}AF$,設(shè)$\overrightarrow{AC}=a$,$\overrightarrow{AB}=b$,試用a,b表示$\overrightarrow{AE}$,$\overrightarrow{AD}$,$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知$θ∈(0,\frac{π}{2})$,$sinθ=\frac{3}{5}$.
(Ⅰ)求$sin(θ-\frac{π}{6})$的值;
(Ⅱ)求tan2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若根據(jù)10名兒童的年齡x(歲)與體重y(千克)數(shù)據(jù)用最小二乘法得到用年齡預(yù)測(cè)體重的回歸方程$\hat y=2x+7$,已知這10名兒童的年齡分別是2,3,3,5,2,6,7,3,4,5,則這10名兒童的平均體重是( 。
A.15千克B.16千克C.17千克D.18千克

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.將3個(gè)骰子全部擲出,設(shè)出現(xiàn)6點(diǎn)的骰子的個(gè)數(shù)為X,則P(X≥2)=$\frac{2}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.對(duì)于函數(shù)$f(x)=\sqrt{2}(sinx+cosx)$,給出下列四個(gè)命題:
①存在$α∈(-\frac{π}{2},0)$,使$f(α)=\sqrt{2}$;
②函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{3π}{4}$對(duì)稱;
③存在φ∈R,使函數(shù)f(x+ϕ)的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱;
④函數(shù)f(x)的圖象向左平移$\frac{π}{4}$就能得到y(tǒng)=-2cosx的圖象.
其中正確命題的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如果一組數(shù)據(jù)a1,a2,a3,a4,a5,a6的方差是2,那么另一組數(shù)據(jù)2a1,2a2,2a3,2a4,2a5,2a6的方差是( 。
A.2B.6C.8D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案