17.運(yùn)行如圖所示的程序框圖,若輸入的n=3,x=2,則輸出的y的值為( 。
A.9B.18C.20D.35

分析 首先分析程序框圖,按照循環(huán)結(jié)構(gòu)進(jìn)行運(yùn)算,求出滿足題意時(shí)的y.

解答 解:模擬程序的運(yùn)行,可得
n=3,x=2,y=1,i=2
滿足條件i≥0,執(zhí)行循環(huán)體,y=4,i=1
滿足條件i≥0,執(zhí)行循環(huán)體,y=9,i=0
滿足條件i≥0,執(zhí)行循環(huán)體,y=18,i=-1
不滿足條件i≥0,退出循環(huán),輸出y的值為18.
故選:B.

點(diǎn)評(píng) 本題為程序框圖題,考查對(duì)循環(huán)結(jié)構(gòu)的理解和認(rèn)識(shí),按照循環(huán)結(jié)構(gòu)運(yùn)算后得出結(jié)果,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知橢圓mx2+ny2=1(n>m>0)的離心率為$\frac{{\sqrt{2}}}{2}$,則雙曲線mx2-ny2=1的離心率為( 。
A.2B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.以(a,1)為圓心,且與兩直線x-y+1=0及x-y-3=0同時(shí)相切的圓的標(biāo)準(zhǔn)方程為(  )
A.x2+(y-1)2=2B.(x-2)2+(y-1)2=2C.x2+(y-1)2=8D.(x-2)2+(y-1)2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=$\frac{sin4x}{1+cos4x}$的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ex-$\frac{1}{2}$x2,設(shè)l為曲線y=f(x)在點(diǎn)P(x0,f(x0))處的切線,其中x0∈[-1,1].
(1)求直線l的方程(用x0表示)
(2)求直線l在y軸上的截距的取值范圍;
(3)設(shè)直線y=a分別與曲線y=f(x)(x∈[0,+∞))和射線y=x-1(x∈[0,+∞))交于M,N兩點(diǎn),求|MN|的最小值及此時(shí)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.底面是邊長(zhǎng)為1的正方形,側(cè)面是等邊三角形的四棱錐的外接球的體積為( 。
A.$\frac{2\sqrt{2}π}{3}$B.$\frac{\sqrt{2}π}{3}$C.$\frac{2\sqrt{3}π}{3}$D.$\frac{\sqrt{3}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=|x+1|-|x-1|+a(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求不等式f(x)>0的解集;
(Ⅱ)若方程f(x)=x只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.${∫}_{0}^{1}$xdx=( 。
A.0B.$\frac{1}{2}$C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=lnx-ax+a,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a=-1時(shí),關(guān)于x的方程2m[f(x)-a]=x2(m>0)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案