在數(shù)列{an}中,a1=2,an+1=an+ln(1+
1
n
),則an=( 。
A、2+lnn
B、2+(n-1)lnn
C、2+nlnn
D、1+n+lnn
分析:把遞推式整理,先整理對數(shù)的真數(shù),通分變成
n+1
n
,用迭代法整理出結(jié)果,約分后選出正確選項.
解答:解:∵.a2=a1+ln(1+
1
1
)

a3=a2+ln(1+
1
2
)
,

an=an-1+ln(1+
1
n-1
)

a1+ln(
2
1
)(
3
2
)(
4
3
)…(
n
n-1
)=2+lnn

故選A
點評:數(shù)列的通項an或前n項和Sn中的n通常是對任意n∈N成立,因此可將其中的n換成n+1或n-1等,這種辦法通常稱迭代或遞推.
了解數(shù)列的遞推公式,明確遞推公式與通項公式的異同;會根據(jù)數(shù)列的遞推公式寫出數(shù)列的前幾項.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設數(shù)列{
an
n
}的前n項和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a=
12
,前n項和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=a,前n項和Sn構成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省汕尾市陸豐市碣石中學高三(上)第四次月考數(shù)學試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設數(shù)列{}的前n項和為Tn,證明:

查看答案和解析>>

同步練習冊答案