A. | 12 | B. | $\sqrt{74}$ | C. | $\sqrt{80}$ | D. | $3\sqrt{10}$ |
分析 從A點(diǎn)沿不同的表面到C1,其距離可采用將長方體展開的方式求得.
解答 解:從A點(diǎn)沿不同的表面到C1,
其距離可采用將長方體展開的方式求得,
分別是$\sqrt{(3+4)^{2}+{5}^{2}}$=$\sqrt{74}$,$\sqrt{(3+5)^{2}+{4}^{2}}$=4$\sqrt{5}$,$\sqrt{(4+5)^{2}+{3}^{2}}$=3$\sqrt{10}$
∴從A點(diǎn)沿表面到C1的最短距離為$\sqrt{74}$.
故選:B.
點(diǎn)評 本題考查從A點(diǎn)沿表面到C1的最短距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意分類討論思想的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1,2} | B. | {-2,-1,0,1} | C. | {1,2} | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | {0,1} | C. | {-1,1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y+1=0 | B. | x-y-4=0 | C. | x+y-2=0 | D. | x+y-4=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{8}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{4}-{y^2}=1$ | D. | $\frac{x^2}{2}-{y^2}=1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com