函數(shù)f(x)=x2-2x+a在區(qū)間(-2,0)和(2,3)內(nèi)各有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是
 
分析:函數(shù)f(x)=x2-2x+a在區(qū)間(-2,0)和(2,3)內(nèi)各有一個(gè)零點(diǎn),由二次函數(shù)的性質(zhì)知
f(-2)>0
f(0)<0
f(2)<0
f(3)>0
,解此不等式求出實(shí)數(shù)a的取值范圍
解答:解:∵函數(shù)f(x)=x2-2x+a在區(qū)間(-2,0)和(2,3)內(nèi)各有一個(gè)零點(diǎn),
∴由二次函數(shù)的性質(zhì)知
f(-2)>0
f(0)<0
f(2)<0
f(3)>0
,即
4+a>0
a<0
a<0
3+a>0

∴-3<a<0
故答案為-3<a<0
點(diǎn)評(píng):本題考查函數(shù)零點(diǎn)的判斷定理,理解零點(diǎn)判定定理的內(nèi)容,將題設(shè)條件轉(zhuǎn)化為關(guān)于參數(shù)的不等式組是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-ax+4+2lnx
(I)當(dāng)a=5時(shí),求f(x)的單調(diào)遞減函數(shù);
(Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時(shí)切線l的方程;
(Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點(diǎn)P(0,-3).
(1)求過(guò)點(diǎn)P且與曲線C相切的直線的斜率;
(2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+2x,x∈(0,3]的值域?yàn)?!--BA-->
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+
12
x
+lnx的導(dǎo)函數(shù)為f′(x),則f′(2)=
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案