已知雙曲線C1(a>0),拋物線C2的頂點(diǎn)在原點(diǎn)O,C2的焦點(diǎn)是C1的左焦點(diǎn)F1。

(1)求證:C1,C2總有兩個(gè)不同的交點(diǎn);

(2)問(wèn):是否存在過(guò)C2的焦點(diǎn)F1的弦AB,使ΔAOB的面積有最大值或最小值?若存在,求直線AB的方程與SΔAOB的最值,若不存在,說(shuō)明理由。

 

【答案】

(1)(因?yàn)閤1≠0),所以C1,C2總有兩個(gè)不同交點(diǎn)。

(2)存在過(guò)F的直線x=使ΔAOB面積有最小值6a2

【解析】(1)由雙曲線方程得,所以F1(,0),拋物線焦點(diǎn)到準(zhǔn)線的距離,拋物線:    ①

把①代入C1方程得:         ②

Δ=64a2>0,所以方程②必有兩個(gè)不同實(shí)根,設(shè)為x1,x2,由韋達(dá)定理得x1x2=-a2<0,所以②必有一個(gè)負(fù)根設(shè)為x1,把x1代入①得y2=,所以(因?yàn)閤1≠0),所以C1,C2總有兩個(gè)不同交點(diǎn)。

(2)設(shè)過(guò)F1(,0)的直線AB為my=(x+a),由得y2+4may-12a2=0,因?yàn)棣?48m2a2+48a2>0,設(shè)y1,y2分別為A,B的縱坐標(biāo),則y1+y2=,y1y2=-12a2.所以(y1-y2)2=48a2(m2+1).所以SΔAOB=|y1-y2|•|OF1|=a•a•,當(dāng)且僅當(dāng)m=0時(shí),SΔAOB的面積取最小值;當(dāng)m→+∞時(shí),SΔAOB→+∞,無(wú)最大值。所以存在過(guò)F的直線x=使ΔAOB面積有最小值6a2。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題

已知雙曲線C1:-=1(a>0,b>0)的離心率為2.若拋物線C2:x2=2py(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為(  )

(A)x2=y (B)x2=y

(C)x2=8y (D)x2=16y

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練19練習(xí)卷(解析版) 題型:填空題

已知雙曲線C1:-=1(a>0,b>0)與雙曲線C2:-=1有相同的漸近線,C1的右焦點(diǎn)為F(,0),a=    ,b=    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北衡水中學(xué)高三上學(xué)期第五次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線C1(a>0,b>0)的焦距是實(shí)軸長(zhǎng)的2倍.若拋物線C2(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為(    )

A.x2y       B.x2y      C.x2=8y     D.x2=16y

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濟(jì)寧市高三高考預(yù)測(cè)數(shù)學(xué)試卷(有解析) 題型:解答題

已知雙曲線C1(a>0),拋物線C2的頂點(diǎn)在原點(diǎn)O,C2的焦點(diǎn)是C1的左焦點(diǎn)F1。

(1)求證:C1,C2總有兩個(gè)不同的交點(diǎn);

(2)問(wèn):是否存在過(guò)C2的焦點(diǎn)F1的弦AB,使ΔAOB的面積有最大值或最小值?若存在,求直線AB的方程與SΔAOB的最值,若不存在,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案