【題目】如圖,正方體中,EAB中點,F在線段.給出下列判斷:①存在點F使得平面;②在平面內(nèi)總存在與平面平行的直線;③平面與平面ABCD所成的二面角(銳角)的大小與點F的位置無關(guān);④三棱錐的體積與點F的位置無關(guān).其中正確判斷的有(

A.①②B.③④C.①③D.②④

【答案】D

【解析】

運用線面垂直的定義,結(jié)合反證法即可判斷①;運用線面平行的判定定理,即可判斷②;由二面角的平面角的定義,結(jié)合向量法即可判斷③;由線面平行,結(jié)合三棱錐的體積公式可以判斷④.

對于①,假設(shè)存在F使得⊥平面,則,又,,∴⊥平面,則,這與矛盾,所以①錯誤;

對于②,因為平面與平面相交,設(shè)交線為,則在平面內(nèi)與平行的直線平行于平面,故②正確;

對于③,以點為坐標原點,以所在直線為軸,所在直線為軸,所在直線為軸,建立空間坐標系,則平面的法向量為而平面的法向量,隨著位置變化,故平面與平面所成的二面角(銳角)的大小與點的位置有關(guān),故③錯誤;

對于④,三棱錐的體積即為三棱錐,因為∥平面,所以,當在線段上移動時,到平面的距離不變,故三棱錐的體積與點的位置無關(guān),即④正確.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長是短軸長的兩倍,焦距為

1)求橢圓的標準方程;

2)不過原點的直線與橢圓交于兩點、,且直線、、的斜率依次成等比數(shù)列,問:直線是否定向的,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的一個頂點為,焦點在x軸上,若右焦點到直線的距離為3

求橢圓C的方程;

設(shè)橢圓C與直線相交于不同的兩點MN,線段MN的中點為E

時,射線OE交直線于點為坐標原點,求的最小值;

,且時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學隨機抽取部分高一學生調(diào)査其每日自主安排學習的時間(單位:分鐘),并將所得數(shù)據(jù)繪制成如圖所示的頻率分布直方圖,其中自主安排學習時間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80100].

1)求直方圖中x的值;

2)現(xiàn)采用分層抽樣的方式從每日自主安排學習時間不超過40分鐘的學生中隨機抽取6人,若從這6人中隨機抽取2人進行詳細的每日時間安排調(diào)查,求抽到的2人每日自主安排學習時間均不低于20分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線經(jīng)過點

(1)討論函數(shù)的單調(diào)性;

(2)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若的極值點,求a的值及的單調(diào)區(qū)間;

2)若對任意,不等式成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)的導函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)當時,證明;

(Ⅲ)設(shè)為函數(shù)在區(qū)間內(nèi)的零點,其中,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(理)在長方體中,,,,點在棱上移動.

1)探求多長時,直線與平面角;

2)點移動為棱中點時,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】X是一個集合,是一個以X的某些子集為元素的集合,且滿足:①X屬于,屬于;②中任意多個元素的并集屬于;③中任意多個元素的交集屬于.則稱是集合X上的一個拓撲.已知集合,對于下面給出的四個集合

;

.

其中是集合X上的拓撲的集合的序號是________.

查看答案和解析>>

同步練習冊答案