定義:關(guān)于x的不等式|x-A|<B的解集叫A的B鄰域.

已知a+b-2的a+b鄰域?yàn)閰^(qū)間(-2,8),其中a、b分別為橢圓+=1的長半軸長和短半軸長,若此橢圓的一焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,則橢圓的方程為(  )

(A) +=1  (B) +=1

(C) +=1  (D) +=1


B

解析:由題意可知|x-(a+b-2)|<a+b的解集是(-2,8),

∴2a+2b-2=8,即a+b=5.                           ①

又拋物線y2=4x的焦點(diǎn)為(,0),

∴橢圓的焦點(diǎn)在x軸上,且c=,

即a2-b2=5.                                    ②

聯(lián)立①②可得a=3,b=2,

∴橢圓標(biāo)準(zhǔn)方程為+=1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


已知F為雙曲線C: -=1的左焦點(diǎn),P,Q為C上的點(diǎn).若PQ的長等于虛軸長的2倍,點(diǎn)A(5,0)在線段PQ上,則△PQF的周長為    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)過雙曲線x2-y2=9左焦點(diǎn)F1的直線交雙曲線的左支于點(diǎn)P,Q,F2為雙曲線的右焦點(diǎn).若|PQ|=7,則△F2PQ的周長為(  )

(A)19   (B)26   (C)43   (D)50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


橢圓Γ: +=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,焦距為2c.若直線y=(x+c)與橢圓Γ的一個(gè)交點(diǎn)滿足∠MF1F2=2∠MF2F1,則該橢圓的離心率等于    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)橢圓+=1(a>b>0)的左,右焦點(diǎn)分別為F1,F2,點(diǎn)P(a,b)滿足|PF2|=|F1F2|.

(1)求橢圓的離心率e;

(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn).若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點(diǎn),且|MN|=|AB|,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知左焦點(diǎn)為F(-1,0)的橢圓過點(diǎn)E(1,).過點(diǎn)P(1,1)分別作斜率為k1,k2的橢圓的動(dòng)弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若P為線段AB的中點(diǎn),求k1;

(3)若k1+k2=1,求證直線MN恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C: +=1(a>b>0),左、右兩個(gè)焦點(diǎn)分別為F1,F2,上頂點(diǎn)A(0,b),△AF1F2為正三角形且周長為6.

(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;

(2)O為坐標(biāo)原點(diǎn),P是直線F1A上的一個(gè)動(dòng)點(diǎn),求|PF2|+|PO|的最小值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)雙曲線-=1的一條漸近線與拋物線y=x2+1只有一個(gè)公共點(diǎn),則雙曲線的離心率為(  )

(A)   (B)5         (C)      (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


給定一組數(shù)據(jù)x1,x2,…,x20,若這組數(shù)據(jù)的方差為3,則數(shù)據(jù)2x1+3,2x2+3,…,2x20+3的方差為(  )

A.6  B.9  C.12  D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案