【題目】已知定義在區(qū)間上兩個(gè)函數(shù)和,,,.
(1)求函數(shù)的最大值;
(2)若在區(qū)間單調(diào),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),若對(duì)于任意,總存在,使恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)或;(3).
【解析】
(1)根據(jù)二次函數(shù)的圖象和性質(zhì),先將函數(shù)f(x)的解析式進(jìn)行配方,然后討論對(duì)稱軸與區(qū)間[1,2]的位置關(guān)系,可求出函數(shù)y= f(x)的最大值m(a);(2)對(duì)函數(shù)求導(dǎo),分在區(qū)間單調(diào)遞增或單調(diào)遞減兩種情況進(jìn)行討論,轉(zhuǎn)化成或恒成立問題求解即可;(3)根據(jù)題意求出g(x)的最大值,然后使,注意對(duì)a進(jìn)行分類討論,然后建立關(guān)系式,分別解之即可求出a的范圍.
(1),
則當(dāng)時(shí),,
當(dāng)時(shí),,
所以;
(2),依題意,
①在上恒成立,即在上恒成立,則;
②在上恒成立,即在上恒成立,則.
綜上,實(shí)數(shù)的取值范圍為或.
(3)依題意可得,,當(dāng)時(shí),由(2)知在上單調(diào)遞減,則,由(1)得:
①當(dāng)時(shí),,解得,所以;
②當(dāng)時(shí),,解得,所以.
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:1(a>b>0)的離心率為,以橢圓的右頂點(diǎn)與下頂點(diǎn)為直徑端點(diǎn)的圓的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),動(dòng)直線與橢圓交于軸同一側(cè)的兩點(diǎn),且滿足,試問直線是否過定點(diǎn),若過定點(diǎn),求出此定點(diǎn)坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取50個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖.
(1)試估計(jì)使用A款訂餐軟件的50個(gè)商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);
(2)根據(jù)以上抽樣調(diào)查數(shù)據(jù),回答以下問題:
(。榱私馊绾谓档透魃碳业乃筒蜁r(shí)間,我們先從這100家商家里選出平均送達(dá)時(shí)間不超過20分鐘的商家,然后再從中隨機(jī)挑選兩家進(jìn)行跟蹤研究,求恰好所抽中的商家均為使用B款軟件的概率.
(ⅱ)如果你要從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某二手交易市場(chǎng)對(duì)某型號(hào)的二手汽車的使用年數(shù)x(0<x≤10)與銷售價(jià)格y(單位:萬元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù)x | 2 | 4 | 6 | 8 | 10 |
銷售價(jià)格y | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求y關(guān)于x的回歸直線方程.
(參考公式:,)
(2)已知每輛該型號(hào)汽車的收購價(jià)格為ω=0.05x2﹣1.75x+17.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)x為何值時(shí),銷售一輛該型號(hào)汽車所獲得的利潤z最大?(利潤=銷售價(jià)格﹣收購價(jià)格)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為某班35名學(xué)生的投籃成績(jī)(每人投一次)的條形統(tǒng)計(jì)圖,其中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全。已知該班學(xué)生投籃成績(jī)的中位數(shù)是5,則根據(jù)統(tǒng)計(jì)圖,則下列說法錯(cuò)誤的是( )
A. 3球以下(含3球)的人數(shù)為10
B. 4球以下(含4球)的人數(shù)為17
C. 5球以下(含5球)的人數(shù)無法確定
D. 5球的人數(shù)和6球的人數(shù)一樣多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年以來精準(zhǔn)扶貧政策的落實(shí),使我國扶貧工作有了新進(jìn)展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國貧困發(fā)生率的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
貧困發(fā)生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)從表中所給的個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求兩個(gè)都低于的概率;
(2)設(shè)年份代碼,利用線性回歸方程,分析span>年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預(yù)測(cè)年貧困發(fā)生率.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
(的值保留到小數(shù)點(diǎn)后三位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實(shí)施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素某調(diào)查機(jī)構(gòu)對(duì)某校學(xué)生做了一個(gè)是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計(jì)他們是同意父母生“二孩”還是反對(duì)父母生“二孩”現(xiàn)已得知100人中同意父母生“二孩”占,統(tǒng)計(jì)情況如表:
性別屬性 | 同意父母生“二孩” | 反對(duì)父母生“二孩” | 合計(jì) |
男生 | 10 | ||
女生 | 30 | ||
合計(jì) | 100 |
請(qǐng)補(bǔ)充完整上述列聯(lián)表;
根據(jù)以上資料你是否有把握,認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請(qǐng)說明理由.
參考公式與數(shù)據(jù):,其中
k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點(diǎn)是正方形對(duì)角線的交點(diǎn),且.
(1)證明:平面;
(2)若側(cè)面與底面垂直,求五面體的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com