16.若全集U=R集合A={x|1<x≤3},則∁UA=( 。
A.{x|x<1或x≥3}B.{x|x≤1或x>3}C.{x|x<1或x>3}D.{x|x≤1或x≥3}

分析 直接由補(bǔ)集的定義得出答案即可.

解答 解:∵全集U=R集合A={x|1<x≤3},
則∁UA={x|x≤1或x>3}
故選:B

點(diǎn)評 本題考查集合的基本運(yùn)算,補(bǔ)集的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)f(x)的定義域?yàn)镈,f(x)滿足下面兩個條件,則稱f(x)為閉函數(shù).
①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[a,b]⊆D,f(x)在[a,b]上的值域?yàn)閇a,b].
如果f(x)=$\sqrt{2x+1}$+k為閉函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=1,an+1=-SnSn+1,則使$\frac{n{{S}_{n}}^{2}}{1+10{{S}_{n}}^{2}}$取得最大值時n的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線C:$\frac{x^2}{9}$-$\frac{y^2}{16}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,P為C的右支上一點(diǎn),且|PF2|=$\frac{3}{5}$|F1F2|,則△PF1F2的面積等于( 。
A.8B.$8\sqrt{7}$C.$8\sqrt{14}$D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在直角坐標(biāo)系中,不等式y(tǒng)2-x2≤0表示的平面區(qū)域是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a=(-$\frac{1}{2}$)-1,b=2${\;}^{-\frac{1}{2}}$,c=($\frac{1}{2}$)${\;}^{-\frac{1}{2}}$,d=2-1,則此四數(shù)中最大的是( 。
A.aB.bC.cD.d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.定義在[-3,3]上的增函數(shù)f(x)滿足f(-x)=-f(x),且f(m+1)+f(2m-1)>0,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=$\frac{{{x^2}-1}}{{{x^2}+2}}$在(-1,+∞)上的值域?yàn)閇$-\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某中學(xué)經(jīng)市政府批準(zhǔn)建分校,建分校工程分三期完成,確定由甲、乙兩家建筑公司承建此工程.規(guī)定每期工程僅由兩公司之一獨(dú)立承建,必須在前一期工程完工后再開始后一期工程.已知甲公司獲得第一期、第二期、第三期工程承包權(quán)的概率分別為$\frac{2}{3}$,$\frac{1}{2}$,$\frac{1}{4}$.
(Ⅰ)求甲公司至少獲得一期工程的概率;
(Ⅱ)求甲公司獲得工程期數(shù)比乙公司獲得工程期數(shù)多的概率.

查看答案和解析>>

同步練習(xí)冊答案