A. | 2 | B. | $\frac{5}{4}$ | C. | $\frac{5}{4}$或2 | D. | -2 |
分析 畫出滿足條件的平面區(qū)域,求出A,B的坐標(biāo),由z=ax+y得:y=-ax+z,結(jié)合函數(shù)的圖象顯然直線y=-ax+z過A,B時,z最大,求出a的值即可.
解答 解:畫出滿足條件的平面區(qū)域,如圖示:
由$\left\{\begin{array}{l}{4x+y-8=0}\\{x+y-5=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,
由z=ax+y得:y=-ax+z,
當(dāng)直線y=-ax+z過A(1,4)時,B(4,1),z最大,
此時,6=a+4,或6=4a+1,
解得:a=2或a=$\frac{5}{4}$,
當(dāng)a=2時,z可在(4,1)取到最大值9,不符合題意
故選:B.
點(diǎn)評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{x^2}$ | B. | 2x | C. | -2x | D. | -$\frac{2}{x^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com