命題p:?x∈[1,2],x2-a≥0;命題q:?x∈R,x2+2ax+2-a=0,若命題p且q為真,則a取值范圍為( )
A.a(chǎn)≤-2或a=1
B.a(chǎn)≤-2或1≤a≤2
C.a(chǎn)≥1
D.-2a≤a≤1
【答案】分析:由p且q為真可知p和q為均真,p為不等式恒成立問(wèn)題,轉(zhuǎn)化為求函數(shù)的最小值問(wèn)題,
q中為二次方程有解問(wèn)題,△≥0.
解答:解:p:?x∈[1,2],x2-a≥0,只要(x2-a)min≥0,x∈[1,2],
又y=x2-a,x∈[1,2]的最小值為1-a,所以1-a≥0,a≤1.
q:?x∈R,x2+2ax+2-a=0,所以△=4a2-4(2-a)≥0,a≤-2或a≥1,
由p且q為真可知p和q為均真,所以a≤-2或a=1,
故選A
點(diǎn)評(píng):本題以復(fù)合命題真假問(wèn)題考查二次不等式恒成立問(wèn)題、二次方程有解問(wèn)題.
不等式恒成立問(wèn)題經(jīng)常轉(zhuǎn)化為求函數(shù)的最值問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:“?x∈[1,2],x2-a≥0”,命題q:“?x0∈R,x02+2ax0+a=0”,若“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“?x∈[1,2],x2-a≥0”,命題q:“?x∈R”,使“x2+2ax+2-a=0”,若命題P且q是假命題,則實(shí)數(shù)a的取值范圍是
{a|a>-2且a≠1}.
{a|a>-2且a≠1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山一模)已知命題p:“?x∈[1,2],使x2-a<0成立”,若¬p是真命題,則實(shí)數(shù)a的取值范圍是
a≤1
a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若命題p:|x+1|<2,命題q:x2<2-x,則¬p是¬q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:|x-1|<4;q:(x-2)(3-x)>0,則p是q的(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案