已知函數(shù)f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值為3,f(x)的圖象在y軸上的截距為2,其相鄰兩對稱軸間的距離為2,則f(1)+f(2)+f(3)+…+f(100)=   
【答案】分析:先將原函數(shù)用降冪公式轉(zhuǎn)化為:f(x)=cos(2ωx+2ϕ)++1,求出函數(shù)的A,T,ω,通過f(x)的圖象在y軸上的截距為2,求出φ,得到函數(shù)的表達式,然后求出所求的值.
解答:解:將原函數(shù)f(x)=Acos2(ωx+ϕ)+1轉(zhuǎn)化為:f(x)=cos(2ωx+2ϕ)++1
相鄰兩對稱軸間的距離為2可知周期為:4,則2ω==,ω=
由最大值為3,可知A=2
又∵圖象經(jīng)過點(0,2),
∴cos2ϕ=0
∴2∅=kπ+
∴f(x)=cos(x+kπ+)+2=2±sin(x)
∵f(1)=2+1,f(2)=0+2,f(3)=-1+2,f(4)=0+2…
f(1)+f(2)+f(3)+…+f(2010)=502×8+5=4021
或f(1)=2-1,f(2)=0+2,f(3)=1+2,f(4)=0+2…
f(1)+f(2)+f(3)+…+f(2010)=502×8+3=4019
故答案為:4021或4019
點評:本題是基礎題,考查三角函數(shù)的表達式的求法,函數(shù)的值的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案