【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若存在,使不等式成立,求的最小值.
【答案】(1)見(jiàn)解析;(2)2
【解析】分析:(1)求出,分兩種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)問(wèn)題等價(jià)于,令,問(wèn)題轉(zhuǎn)化為求出,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性求出的最小值,從而求出的最小值即可.
詳解:(1)解:∵
∴
∴當(dāng)即時(shí),對(duì)恒成立
此時(shí),的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間
當(dāng),即時(shí),由,得,由,得
此時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為
綜上所述,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;
當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為
(2)解:由,得:
當(dāng)時(shí),上式等價(jià)于
令
據(jù)題意,存在,使成立,則只需,
令,顯然在上單調(diào)遞增
而,
∴存在,使,即
又當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增
∴當(dāng)時(shí),有極小值(也是最小值)
∴
∵ ,即,∴,∴
又,且, ∴的最小值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=ex﹣2x﹣a在R上有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求,的值;
(2)當(dāng)時(shí),在區(qū)間上至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,a1=1,且anan+1+ (an﹣an+1)+1=0,則a2016=( )
A.1
B.﹣1
C.2+
D.2﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的部分圖像如圖所示.
(1)求函數(shù)的解析式;
(2)求圖中的值及函數(shù)的單調(diào)遞減區(qū)間;
(3)若將的圖象向左平移個(gè)單位后,得到的圖像關(guān)于直線對(duì)稱,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓與圓關(guān)于直線對(duì)稱.
(1)求圓的方程;
(2)過(guò)直線上的點(diǎn)分別作斜率為的兩條直線,使得被圓截得的弦長(zhǎng)與被圓截得的弦長(zhǎng)相等.
(i)求的坐標(biāo);
(ⅱ)過(guò)任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長(zhǎng)是否恒相等,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為直線,是兩個(gè)不同的平面,下列命題中正確的是( )
A. 若∥α,∥β,則α∥βB. 若⊥α,⊥β,則α∥β
C. 若⊥α,∥β,則α∥βD. 若α⊥β,∥α,則⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ex﹣ax2﹣2x+b(e為自然對(duì)數(shù)的底數(shù),a,b∈R).
(Ⅰ)設(shè)f′(x)為f(x)的導(dǎo)函數(shù),證明:當(dāng)a>0時(shí),f′(x)的最小值小于0;
(Ⅱ)若a<0,f(x)>0恒成立,求符合條件的最小整數(shù)b.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com