在等差數(shù)列{an}中,a1=3,a1+a2+a3=12,則a4+a5+a6=(  )
A、28B、27C、26D、21
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:數(shù)列是等差數(shù)列,根據(jù)給出的首項和前三項的和,運用等差中項的概念可求a2,所以公差可求,則a4+a5+a6的值可求.
解答: 解:因為數(shù)列{an}是等差數(shù)列,且a1=3,a1+a2+a3=12,所以3a2=12,a2=4,
所以等差數(shù)列{an}的公差d=1,
所以a4+a5+a6=(a1+a2+a3)+9d=12+9×1=21.
故選D.
點評:本題考查了等差數(shù)列的通項公式,考查了等差中項的概念,若一個數(shù)列是等差數(shù)列,該數(shù)列的第一個n項和,第二個n項和,…,依然構(gòu)成以n2d為公差的等差數(shù)列,該題是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

方程2x2+x3=2的解的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

x(1-x)4-x3(1+3x)12的展開式中,含x4項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四邊形ABCD中,
AB
=
DC
=(1,1),
1
|
BA
|
BA
+
1
|
BC
|
BC
=
3
|
BD
|
BD
,則四邊形ABCD的面積為(  )
A、
3
B、2
3
C、
6
D、
6
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知映射f:A→B,其中集合A={-9,-3,-1,1,3,9},集合B中的元素都是A中的元素在映射f下的象,且對于任意x∈A,在B中和它對應的元素是log3|x|,則集合B為( 。
A、{1,2,3}
B、{0,1,2}
C、{-2,-1,0,1,2}
D、{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是( 。
A、三角形的中位線平行且等于第三邊
B、對角線相等的四邊形是等腰梯形
C、四條邊都相等的四邊形是菱形
D、相等的角是對頂角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平面內(nèi)的兩條相交直線OP1和OP2將該平面分割成四個部分Ⅰ、Ⅱ、Ⅲ、Ⅳ
(不包含邊界),設
OP
=m
OP1
+n
OP2
,且點P落在第Ⅳ部分,則實數(shù)m、n滿足(  )
A、m>0,n>0
B、m>0,n<0
C、m<0,n>0
D、m<0,n<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且
b
a+b-c
=
a+c
a+b

(I)求角A;
(Ⅱ)若a=15,b=10,求cosB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某企業(yè)決定從甲、乙兩種產(chǎn)品中選擇一種進行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下(單位:萬美元):
年固定成本每件產(chǎn)品成本每件產(chǎn)品銷售價每年最多生產(chǎn)的件數(shù)
甲產(chǎn)品30a10200
乙產(chǎn)品50818120
其中年固定成本與生產(chǎn)的件數(shù)無關(guān),a為常數(shù),且4≤a≤8.另外年銷售x件乙產(chǎn)品時需上交0.05x2萬美元的特別關(guān)稅.
(1)寫出該廠分別投資生產(chǎn)甲、乙兩種產(chǎn)品的年利潤y1,y2與生產(chǎn)相應產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系式;
(2)分別求出投資生產(chǎn)這兩種產(chǎn)品的最大利潤;
(3)如何決定投資可獲得最大年利潤.

查看答案和解析>>

同步練習冊答案