19.(1)利用“五點(diǎn)法”畫出函數(shù)$y=2sin(\frac{1}{2}x+\frac{π}{6})$在長(zhǎng)度為一個(gè)周期的閉區(qū)間的簡(jiǎn)圖.
    x-$\frac{π}{3}$  $\frac{2π}{3}$    $\frac{5π}{3}$$\frac{8π}{3}$  $\frac{11π}{3}$    
  $\frac{1}{2}x+\frac{π}{6}$0              $\frac{π}{2}$                  π            $\frac{3π}{2}$               2π               
    y020-20
(2)說(shuō)明該函數(shù)圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣平移和伸縮變換得到的.

分析 (1)先列表如圖確定五點(diǎn)的坐標(biāo),后描點(diǎn)并畫圖,利用“五點(diǎn)法”畫出函數(shù)$y=2sin(\frac{1}{2}x+\frac{π}{6})$在長(zhǎng)度為一個(gè)周期的閉區(qū)間的簡(jiǎn)圖.
(2)依據(jù)y=sinx的圖象上所有的點(diǎn)向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,y=sin(x+$\frac{π}{6}$)的圖象,
再把所得圖象的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到y(tǒng)=sin($\frac{1}{2}$x+$\frac{π}{6}$)的圖象,
 再把所得圖象的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變),得到y(tǒng)=2sin($\frac{1}{2}$x+$\frac{π}{6}$)的圖象.

解答 解:(1)列表如下:

x-$\frac{π}{3}$$\frac{2π}{3}$$\frac{5π}{3}$$\frac{8π}{3}$$\frac{11π}{3}$
$\frac{1}{2}x+\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$
y020-20
函數(shù)$y=2sin(\frac{1}{2}x+\frac{π}{6})$在長(zhǎng)度為一個(gè)周期的閉區(qū)間的簡(jiǎn)圖如下:

(2)把y=sinx的圖象上所有的點(diǎn)向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,y=sin(x+$\frac{π}{6}$)的圖象,
再把所得圖象的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到y(tǒng)=sin($\frac{1}{2}$x+$\frac{π}{6}$)的圖象,
再把所得圖象的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變),得到y(tǒng)=2sin($\frac{1}{2}$x+$\frac{π}{6}$)的圖象.

點(diǎn)評(píng) 本題考查五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象,函數(shù)y=Asin(ωx+φ)的圖象變換,考查計(jì)算能力,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=(m+2cos2x)•cos(2x+θ)為奇函數(shù),且f($\frac{π}{4}$)=0,其中m∈R,θ∈(0,π)
(Ⅰ)求函數(shù)f(x)的圖象的對(duì)稱中心和單調(diào)遞增區(qū)間
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且f($\frac{C}{2}$+$\frac{π}{24}$)=-$\frac{1}{2}$,c=1,ab=2$\sqrt{3}$,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合M={1,2,3,4},集合N={1,3,5},則M∩N等于(  )
A.{2}B.{2,3}C.{1,3}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.直線$\sqrt{3}$x+y+3=0的傾斜角為(  )
A.B.-30°C.350°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)已知橢圓焦距為8,長(zhǎng)半軸長(zhǎng)為10,焦點(diǎn)在x軸上,求橢圓標(biāo)準(zhǔn)方程.
(2)已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為F(3,0),離心率等于$\frac{3}{2}$,則求該雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(x)=4sinωxsin(ωx+$\frac{π}{3}$)-1(ω>0),f(x)的最小正周期為π.
(Ⅰ)當(dāng)x∈[0,$\frac{2π}{3}$]時(shí),求f(x)的最大值;
(Ⅱ)請(qǐng)用“五點(diǎn)作圖法”畫出f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)復(fù)數(shù)z=1+2i,則$\frac{z^2}{{|{z^2}|}}$=( 。
A.$\frac{3}{5}-\frac{4}{5}i$B.$-\frac{3}{5}+\frac{4}{5}i$C.$1+\frac{4}{5}i$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.焦點(diǎn)在x軸上,且漸近線方程為y=±2x的雙曲線的方程是( 。
A.x2-$\frac{y^2}{4}$=1B.$\frac{x^2}{4}-{y^2}$=1C.$\frac{y^2}{4}-{x^2}$=1D.y2-$\frac{x^2}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)命題P:?n∈N,n2>2n,則¬P為( 。
A.?n∈N,n2>2nB.?n∈N,n2≤2nC.?n∈N,n2≤2nD.?n∉N,n2≤2n

查看答案和解析>>

同步練習(xí)冊(cè)答案