【題目】如圖所示,在平行四邊形ABCD中,,,,點E是CD邊的中點,將沿AE折起,使點D到達點P的位置,且.
(1)求證;平面平面ABCE;
(2)求點E到平面PAB的距離.
【答案】(1)見解析;(2)
【解析】
(1)推導(dǎo)出,,從而平面PAE,由此能證明平面平面ABCE.
(2)推導(dǎo)出,平面PAE,以E為原點,EA,EB,EP為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出點E到平面PAB的距離.
(1)∵在平行四邊形ABCD中,,,,
點E是CD邊的中點,將沿AE折起,
使點D到達點P的位置,且.
∴,
∴,
∵,∴,
∵,∴平面PAE,
∵平面ABCE,∴平面平面ABCE.
解:(2)∵,,,
∴,∴.
∵平面PAE,,
∴平面PAE,
∴EA,EC,EP兩兩垂直,
以E為原點,EA,EB,EP為x,y,軸,建立空間直角坐標(biāo)系,
則,
,,
設(shè)平面PAB的法向量,
則,
取,得,
∴點E到平面PAB的距離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點為,右焦點為,直線與軸相交于點,且是的中點.
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點的直線與橢圓相交于兩點,都在軸上方,并且在之間,且到直線的距離是到直線距離的倍.
①記的面積分別為,求;
②若原點到直線的距離為,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù))
(1)求的單調(diào)區(qū)間;
(2)已知關(guān)于的方程有三個實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為F,直線與拋物線C交于A,B兩點,若,則.
(1)求拋物線C的方程;
(2)分別過點A,B作拋物線C的切線、,若,分別交x軸于點M,N,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線與拋物線在第一象限的交點為,點A,B分別在拋物線,上,,分別與,相切.
(1)當(dāng)點M的縱坐標(biāo)為4時,求拋物線的方程;
(2)若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若不等式恒成立,求的最小值(其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢:
下列敘述錯誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占
C. 該市10月的前半個月的空氣質(zhì)量越來越好
D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,過點作直線,分別與橢圓交于,及,點,若,的周長為8.
(1)求橢圓的方程;
(2)求四邊形面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com