15.已知定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當(dāng)0<x≤1時(shí),f(x)=2x,則f(2017)+f(2016)=( 。
A.0B.1C.2D.3

分析 運(yùn)用賦值法,可得函數(shù)f(x)為周期為4的周期函數(shù),且f(0)=0,求出f(2017)=f(1),f(2016)=f(0),代入函數(shù)的表達(dá)式求出函數(shù)值即可.

解答 解:∵定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),
∴函數(shù)f(x)為奇函數(shù),
又∵f(1+x)=f(1-x),
可得f(x+1)=-f(x-1),
即為f(x+2)=-f(x),
即有f(x+4)=-f(x+2)=f(x),
∴函數(shù)f(x)為周期為4的周期函數(shù),
∴f(2017)=f(504×4+1)=f(1),
由當(dāng)0<x≤1時(shí),f(x)=2x,
可得f(1)=2,
由f(2016)=f(504×4)=f(0)=0,
則f(2017)+f(2016)=f(1)+f(0)=2.
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性、周期性的運(yùn)用,注意運(yùn)用賦值法和定義法,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在半徑為2cm的圓中,有一條弧長(zhǎng)為$\frac{π}{3}$ cm,它所對(duì)的圓心角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在△ABC中,D是邊BC上一點(diǎn),$\overrightarrow{BD}=2\overrightarrow{DC},|{\overrightarrow{AD}}$|=1.
(1)用$\overrightarrow{AB},\overrightarrow{AD}$表示$\overrightarrow{AC}$;
(2)若$\overrightarrow{AB}•\overrightarrow{BD}+{\overrightarrow{AB}^2}$=0,求$\overrightarrow{AD}•\overrightarrow{AC}$的值;
(3)若AB=3,cos∠BAC=-$\frac{1}{3}$,求$|{\overrightarrow{BC}}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知a=3,b=5,c=7,則△ABC的面積為$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合M={x|x2>4},N={x|1<x<3},則N∩(∁RM)=( 。
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知向量$\overrightarrow a=({cosx,-\sqrt{3}cosx}),\overrightarrow b=({sin({x+\frac{π}{3}}),cosx})$,函數(shù)$f(x)=\overrightarrow a•\overrightarrow b+\frac{{\sqrt{3}}}{2}$.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若$f({\frac{α}{2}})=\frac{5}{26}+\frac{{\sqrt{3}}}{4}$,且α為第一象限角,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知一個(gè)口袋中裝有黑球和白球共7個(gè),這些球除顏色外完全相同,從中任取2個(gè)球都是白球的概率為$\frac{1}{7}$.現(xiàn)有甲、乙兩人輪流、不放回地從口袋中取球,每次取1球,甲先取,乙后取,然后甲再取,…,直到口袋中的球取完為止.若取出白球,則記2分;若取出黑球,則記1分.每個(gè)球在每一次被取出是等可能的.用ξ表示甲、乙最終得分差的絕對(duì)值.
(1)求口袋中原有白球的個(gè)數(shù);
(2)求隨機(jī)變量ξ的概率分布和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.一組數(shù)據(jù)1,3,2,5,4的方差是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{x+1}-3,-1<x≤0}\\{x,0<x≤1}\end{array}\right.$,若函數(shù)g(x)=f(x)-mx-m在(-1,1]內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍為($-\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案