如圖,圓柱的軸截面ABCD是正方形,點E在底面的圓周上,AF⊥DE,F(xiàn)是垂足.
(1)求證:AF⊥DB;
(2)如果圓柱與三棱錐D﹣ABE的體積的比等于3π,求直線DE與平面ABCD所成的角.
(1)見解析;(2)arcctg(/5)
【解析】
試題分析:(1)欲證AF⊥DB,先證AF⊥平面DEB,根據(jù)線面垂直的判定定理可知只需證EB⊥AF,AF⊥DE,且EB∩DE=E,即可證得線面垂直;
(2)點E作EH⊥AB,H是垂足,連接DH,易證∠EDH是DE與平面ABCD所成的角,在三角形EDH中求出此角即可.
(1)證明:根據(jù)圓柱性質(zhì),DA⊥平面ABE.
∵EB?平面ABE,
∴DA⊥EB.
∵AB是圓柱底面的直徑,點E在圓周上,
∴AE⊥EB,又AE∩AD=A,
故得EB⊥平面DAE.
∵AF?平面DAE,
∴EB⊥AF.
又AF⊥DE,且EB∩DE=E,
故得AF⊥平面DEB.
∵DB?平面DEB,
∴AF⊥DB.
(2)【解析】
過點E作EH⊥AB,H是垂足,連接DH.
根據(jù)圓柱性質(zhì),平面ABCD⊥平面ABE,AB是交線.且EH?平面ABE,所以EH⊥平面ABCD.
又DH?平面ABCD,所以DH是ED在平面ABCD上的射影,從而∠EDH是DE與平面ABCD所成的角.
設(shè)圓柱的底面半徑為R,則DA=AB=2R,于是
V圓柱=2πR3,.
由V圓柱:VD﹣ABE=3π,得EH=R,可知H是圓柱底面的圓心,
AH=R,
DH=
∴∠EDH=arcctg=arcctg(/5),
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年安徽省淮北市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知實數(shù)x,y滿足設(shè),若的最大值為6,則的最小值為( )
A.—3 B.—2 C.—1 D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年貴州省高三模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知向量,,若,則的最小值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年上海市高二上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題
下列命題中正確的是 ( )
A.公差為0的等差數(shù)列是等比數(shù)列
B.成等比數(shù)列的充要條件是
C.公比的等比數(shù)列是遞減數(shù)列
D.是成等差數(shù)列的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年上海市高二上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)是滿足的整數(shù),若成等比數(shù)列,則的值依次為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修4-1 2.3柱面與平面的截面練習(xí)卷(解析版) 題型:填空題
用與底面成45°角的平面截圓柱得一橢圓截線,則該橢圓的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修4-1 2.3柱面與平面的截面練習(xí)卷(解析版) 題型:選擇題
某舞臺燈光設(shè)計師為了在地板上設(shè)計圖案,他把一端向下發(fā)光的光源和支架之間的角度固定為θ角,支架的一端固定在地板的中心位置,支架的另一端固定在天花板的適當(dāng)位置,當(dāng)光源圍繞支架以θ角快速旋轉(zhuǎn)時,地板上可能出現(xiàn)的圖案有( )
A.橢圓 B.拋物線 C.圓 D.以上均有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修4-1 2.2直線與球、平面與球位置關(guān)系(解析版) 題型:選擇題
(2009•奉賢區(qū)二模)已知一球半徑為2,球面上A、B兩點的球面距離為,則線段AB的長度為( )
A.1 B. C.2 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修2-2 2.5簡單復(fù)合函數(shù)求導(dǎo)法則練習(xí)卷(解析版) 題型:?????
(2012•杭州一模)已知函數(shù)f(x)=,要得到f′(x)的圖象,只需將f(x)的圖象( )個單位.
A.向右平移 B.向左平移 C.向右平移 D.向左平移
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com